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1. Suppose that the structural material is isotropic, with elastic modulus 𝑬 and Poisson’s ratio 

𝝂. The in-plane stress-strain relations for plane stress and plane strain as given in any 

textbook on elasticity are: 

𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑒𝑠𝑠: [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

] =
𝐸

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] [

𝜀𝑥𝑥

𝜀𝑦𝑦

2𝜀𝑥𝑦

] 

 

𝑝𝑙𝑎𝑛𝑒 𝑠𝑡𝑟𝑎𝑖𝑛: [

𝜎𝑥𝑥

𝜎𝑦𝑦

𝜎𝑥𝑦

] =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1 − 2𝜈

2

] [

𝜀𝑥𝑥

𝜀𝑦𝑦

2𝜀𝑥𝑦

] 

a) Show that the constitutive matrix of plane strain can be formally obtained by 

replacing 𝑬 by a fictitious modulus 𝑬∗ and 𝝂 by a fictitious Poisson’s ratio 𝝂∗ in 

the plane stress constitutive matrix. Find the expression of 𝑬∗ and 𝝂∗ in terms of 

𝑬 and 𝝂. 

Three relations must be satisfied: 

𝐸∗

1 − (𝜈∗)2
=

𝐸(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 

𝐸∗𝜈∗

1 − (𝜈∗)2
=

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
 

𝐸∗(1 − 𝜈∗)

2(1 − (𝜈∗)2)
=

𝐸

2(1 + 𝜈)
 

The first relation leads to: 

𝐸∗ = 𝐸
(1 − (𝜈∗)2)(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
 

 

Substituting the first into the second relation: 

𝐸(1 − (𝜈∗)2)𝜈∗

1 − (𝜈∗)2
= 𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)

(1 + 𝜈)(1 − 2𝜈)(1 − 𝜈)
→ 𝜈∗ =

𝜈

1 − 𝜈
 

 

Back to the first relation, substituting the result obtained: 

𝐸∗ = 𝐸
(1 − (

𝜈
1 − 𝜈)

2

) (1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
= 𝐸

(1 − 𝜈)2 − 𝜈2

(1 − 𝜈)2

(1 − 𝜈)

(1 + 𝜈)(1 − 2𝜈)
= 

= 𝐸
1 − 2𝜈

(1 − 𝜈)(1 + 𝜈)(1 − 2𝜈)
=

𝐸

1 − 𝜈2
 

 



The last step is to check that the last relation holds using the two previous relation: 
𝐸∗(1 − 𝜈∗)

2(1 − (𝜈∗)2)
=

𝐸

1 − 𝜈2
(1 −

𝜈

1 − 𝜈
)

1

2 (1 − (
𝜈

1 − 𝜈)
2

)

=
𝐸

1 − 𝜈2

(1 − 2𝜈)

1 − 𝜈

(1 − 𝜈)2

2(1 − 2𝜈)
=

𝐸

2

1 − 𝜈

1 − 𝜈2
=

𝐸

2(1 + 𝜈)
  

 

Which is exactly the third relation. So the constitutive matrix of plane strain can 

be obtained from the plane stress matrix substituting: 

𝐸∗ =
𝐸

1 − 𝜈2
, 𝜈∗ =

𝜈

1 − 𝜈
 

 

b) Do also the inverse process: go from plane strain to plane strain by replacing a 

fictitious modulus and Poisson’s ratio in the plane strain constitutive matrix. 

To obtain the inverse relation, the only thing to do is to invert the two relations 

for 𝐸 and 𝜈: 

𝐸 =
𝐸̂

1 − 𝜈̂2
, 𝜈 =

𝜈̂

1 − 𝜈̂
 

 

The inverse of the second relation is computed first: 

𝜈 =
𝜈̂

1 − 𝜈̂
→ 𝜈(1 − 𝜈̂) − 𝜈̂ = 0 → 𝜈̂ + 𝜈𝜈̂ − 𝜈 = 𝜈̂(1 + 𝜈) − 𝜈 = 0 

𝜈̂ =
𝜈

1 + 𝜈
 

 

Substituting in the first equation: 

𝐸 =
𝐸̂

1 − 𝜈̂2
= 𝐸̂

1

1 − (
𝜈

1 + 𝜈
)

2 = 𝐸̂
(1 + 𝜈)2

1 + 2𝜈
→ 𝐸̂ = 𝐸

1 + 2𝜈

(1 + 𝜈)2
 

 

The relations to transform the plane strain constitutive matrix to plane stress are: 

𝐸̂ = 𝐸
1 + 2𝜈

(1 + 𝜈)2
, 𝜈̂ =

𝜈

1 + 𝜈
 

 

  



2. In the finite element formulation of near incompressible isotropic materials (as well 

as plasticity and viscoelasticity) it is convenient to use the so-called Lamé constants 

𝝀 and 𝝁 instead of 𝑬 and 𝝂 in the constitutive equations. Both 𝝀 and 𝝁 have the 

physical dimensions of stress and are related to 𝑬 and 𝝂 by: 

𝜆 =
𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
   𝜇 = 𝐺 =

𝐸

2(1 + 𝜈)
 

 

a) Find the inverse relations for 𝑬, 𝝂 in terms of 𝝀, 𝝁: 

From the second relation: 

𝐸 = 2𝜇(1 + 𝜈) 

Substituting on the first relation: 

𝜆 =
2𝜇(1 + 𝜈)𝜈

(1 + 𝜈)(1 − 2𝜈)
=

2𝜇𝜈

1 − 2𝜈
→ 𝜆 − 2𝜆𝜈 − 2𝜇𝜈 = 0 → 𝜆 − 2𝜈(𝜆 + 𝜇) = 0 

𝜈 =
𝜆

2(𝜆 + 𝜇)
 

Back to the previous expression: 

𝐸 = 2𝜇 (1 +
𝜆

2(𝜆 + 𝜇)
) = 𝜇

3𝜆 + 2𝜇

𝜆 + 𝜇
  

The inverse equations are: 

𝐸 = 𝜇
3𝜆 + 2𝜇

𝜆 + 𝜇
, 𝜈 =

𝜆

2(𝜆 + 𝜇)
 

 

b) Express the elastic matrix for plane stress and plane strain cases in term of 𝝀, 𝝁: 

The plane stress constitutive matrix is: 

𝐸

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] 

Substituting: 

𝜇
3𝜆 + 2𝜇

𝜆 + 𝜇

1

1 − (
𝜆

2(𝜆 + 𝜇)
)
2

[
 
 
 
 
 
 
 1

𝜆

2(𝜆 + 𝜇)
0

𝜆

2(𝜆 + 𝜇)
1 0

0 0
1 −

𝜆
2(𝜆 + 𝜇)

2 ]
 
 
 
 
 
 
 

= 

𝜇
3𝜆 + 2𝜇

𝜆 + 𝜇

4(𝜆 + 𝜇)2

4(𝜆 + 𝜇)2 − 𝜆2

[
 
 
 
 
 
 1

𝜆

2(𝜆 + 𝜇)
0

𝜆

2(𝜆 + 𝜇)
1 0

0 0
2(𝜆 + 𝜇) − 𝜆

4(𝜆 + 𝜇) ]
 
 
 
 
 
 

= 



4𝜇
3𝜆 + 2𝜇

3𝜆2 + 8𝜆𝜇 + 4𝜇2

[
 
 
 
 
 𝜆 + 𝜇

𝜆

2
0

𝜆

2
𝜆 + 𝜇 0

0 0
𝜆 + 2𝜇

4 ]
 
 
 
 
 

 

 

 

c) Split the stress-strain matrix 𝑬 of plane strain as: 

𝑬 = 𝑬𝝀 + 𝑬𝝁 

In which 𝑬𝝀 and 𝑬𝝁 contain only 𝝀 and 𝝁, respectively. This is the Lamé {𝝀, 𝝁} 

splitting of the plane strain constitutive equations, which leads to the so-called 

B-bar formulation of near-incompressible finite elements: 

The plane strain constitutive matrix is: 

𝐸

(1 + 𝜈)(1 − 2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1 − 2𝜈

2

] 

Substituting: 

𝜇
3𝜆 + 2𝜇

𝜆 + 𝜇

1

1 +
𝜆

2(𝜆 + 𝜇)

1

1 −
𝜆

(𝜆 + 𝜇)

[
 
 
 
 
 
 
 1 −

𝜆

2(𝜆 + 𝜇)

𝜆

2(𝜆 + 𝜇)
0

𝜆

2(𝜆 + 𝜇)
1 −

𝜆

2(𝜆 + 𝜇)
0

0 0
1 −

𝜆
(𝜆 + 𝜇)

2 ]
 
 
 
 
 
 
 

= 

𝜇
3𝜆 + 2𝜇

𝜆 + 𝜇

2(𝜆 + 𝜇)

2(𝜆 + 𝜇) + 𝜆

(𝜆 + 𝜇)

(𝜆 + 𝜇) − 𝜆

[
 
 
 
 
 
 

𝜆 + 2𝜇

2(𝜆 + 𝜇)

𝜆

2(𝜆 + 𝜇)
0

𝜆

2(𝜆 + 𝜇)

𝜆 + 2𝜇

2(𝜆 + 𝜇)
0

0 0
𝜇

2(𝜆 + 𝜇)]
 
 
 
 
 
 

= 

[
𝜆 + 2𝜇 𝜆 0

𝜆 𝜆 + 2𝜇 0
0 0 𝜇

] = [
𝜆 𝜆 0
𝜆 𝜆 0
0 0 0

] + [
2𝜇 0 0
0 2𝜇 0
0 0 𝜇

] 

 

d) Express 𝑬𝝀 and 𝑬𝝁 also in terms of 𝑬 and 𝝂: 

The only step is to substitute the Lamé parameters using the given relations: 

[
𝜆 𝜆 0
𝜆 𝜆 0
0 0 0

] + [
2𝜇 0 0
0 2𝜇 0
0 0 𝜇

] = 

𝐸𝜈

(1 + 𝜈)(1 − 2𝜈)
[
1 1 0
1 1 0
0 0 0

] +
𝐸

2(1 + 𝜈)
+ [

2 0 0
0 2 0
0 0 1

] 

 

  



3. Consider a plane triangular domain of thickness h, with horizontal and vertical edges 

have length a. Let’s consider for simplicity 𝒂 = 𝒉 = 𝟏. The material parameters are 

𝑬, 𝝂. Initially 𝝂 is set to zero. Two structural models are considered for this problem 

as depicted in the figure: 
 A plane linear Turner triangle with the same dimensions. 
 A set of three bar elements placed over the edges of the triangular 

domain. The cross sections for the bars are 𝑨𝟏 = 𝑨𝟐 and 𝑨𝟑. 

 

 
 

 

 

 

 

 

 

 

 

a) Calculate the stiffness matrix 𝑲𝒆 for both models. 

The calculation of the Turner model is done as follows: 

𝑲𝒆 =
ℎ

4𝐴
𝑩𝑻𝑬𝑩

=
ℎ

4𝐴

[
 
 
 
 
 
𝑦23 0 𝑥32

0 𝑥32 𝑦23

𝑦31 0 𝑥13

0 𝑥13 𝑦31

𝑦12 0 𝑥21

0 𝑥21 𝑦12]
 
 
 
 
 

[
𝐸11 𝐸12 𝐸13

𝐸12 𝐸22 𝐸23

𝐸13 𝐸23 𝐸33

] [
𝑦23 0 𝑦31 0 𝑦12 0
0 𝑥32 0 𝑥13 0 𝑥21

𝑥32 𝑦23 𝑥13 𝑦31 𝑥21 𝑦12

] 

Substituting the numerical values: 

𝑲𝒆 =
𝐸

2(1 − 𝜈2)

[
 
 
 
 
 
−1 0 −1
0 −1 −1
1 0 0
0 0 1
0 0 1
0 1 0 ]

 
 
 
 
 

[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

] [
−1 0 1 0 0 0
0 −1 0 0 0 1

−1 −1 0 1 1 0
] = 



𝑲𝒆 =
𝐸

2(1 − 𝜈2)

[
 
 
 
 
 
 
 
 
 
3 − 𝜈

2

1 + 𝜈

2
−1

𝜈 − 1

2

𝜈 − 1

2
−𝜈

1 + 𝜈

2

3 − 𝜈

2
−𝜈

𝜈 − 1

2

𝜈 − 1

2
−1

−1 −𝜈 1 0 0 𝜈
𝜈 − 1

2

𝜈 − 1

2
0

1 − 𝜈

2

1 − 𝜈

2
0

𝜈 − 1

2

𝜈 − 1

2
0

1 − 𝜈

2

1 − 𝜈

2
0

−𝜈 −1 𝜈 0 0 1 ]
 
 
 
 
 
 
 
 
 

 

 

In the case of 𝜈 = 0 the stiffness matrix is the following: 

𝑲𝒆 =
𝐸

4

[
 
 
 
 
 

3 1 −2 −1 −1 0
1 3 0 −1 −1 −2

−2 0 2 0 0 0
−1 −1 0 1 1 0
−1 −1 0 1 1 0
0 −2 0 0 0 2 ]

 
 
 
 
 

 

 

For the calculation of the bar triangle the three elemental matrices are first calculated: 

𝑲𝟏 = 𝐸𝐴 [

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

] 

𝑲𝟐 = 𝐸𝐴 [

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

] 

𝑲𝟑 =
𝐸𝐴′

2√2
[

1 1 −1 −1
1 1 −1 −1

−1 −1 1 1
−1 −1 1 1

] 

Taking 𝐴∗ =
𝐴′

2√2
, the assembly process is done: 

𝑲 = 𝐸

[
 
 
 
 
 

𝐴 0 −𝐴 0 0 0
0 𝐴 0 0 0 −𝐴

−𝐴 0 𝐴 + 𝐴∗ 𝐴∗ −𝐴∗ −𝐴∗

0 0 𝐴∗ 𝐴∗ −𝐴∗ −𝐴∗

0 0 −𝐴∗ −𝐴∗ 𝐴∗ 𝐴∗

0 −𝐴 −𝐴∗ −𝐴∗ 𝐴∗ 𝐴 + 𝐴∗]
 
 
 
 
 

 

 

b) Is there any set of values for cross sections 𝑨𝟏 = 𝑨𝟐 = 𝑨 and 𝑨𝟑 = 𝑨′ to make both 

stiffness matrix equivalent: 𝑲𝒃𝒂𝒓 = 𝑲𝒕𝒓𝒊𝒂𝒏𝒈𝒍𝒆? If not, which are these values to make 

them as similar as possible? 

The two matrices have not similar structure at all. Even for the only diagonal terms is 

hard to find a value of 𝐴 and 𝐴∗ that make both matrices similar. 



Taking the 𝐾11 and 𝐾22 terms we could arrive to the conclusion that 𝐴 =
3

4
. But then, 

looking at 𝐾33 and 𝐾66 terms this would mean that the value of 𝐴∗ should be negative 

making no physical sense. 

c) Why these two stiffness matrices are not equivalent? Fins a physical explanation. 

The two matrices present their major differences on the off-diagonal terms. That is 

due to the fact that in the bar case, there is no distortion energy stored in the process 

of deformation. Only the axial tension and compression produces reaction terms while 

in the Turner element distortion plays an important role. 

 

d) Solve question a) considering 𝝂 ≠ 𝟎 and extract some conclusions. 

This case was calculated already in question a): 

 

𝑲𝒆 =
𝐸

2(1 − 𝜈2)

[
 
 
 
 
 
 
 
 
 
3 − 𝜈

2

1 + 𝜈

2
−1

𝜈 − 1

2

𝜈 − 1

2
−𝜈

1 + 𝜈

2

3 − 𝜈

2
−𝜈

𝜈 − 1

2

𝜈 − 1

2
−1

−1 −𝜈 1 0 0 𝜈
𝜈 − 1

2

𝜈 − 1

2
0

1 − 𝜈

2

1 − 𝜈

2
0

𝜈 − 1

2

𝜈 − 1

2
0

1 − 𝜈

2

1 − 𝜈

2
0

−𝜈 −1 𝜈 0 0 1 ]
 
 
 
 
 
 
 
 
 

 

 

When taking into account the effect of Poisson’s ratio it is seen that the stiffness on 

the diagonal terms is reduced. This is because the deformation due to the Poisson 

effect is in the same direction than the imposed via the external forces. To maintain 

the equilibrium, other terms (most of off-diagonal terms) increase with the Poisson’s 

ratio. 


