
Computational Structural Mechanics and Dynamics 
Assignment 3, Trond Jørgen Opheim 

3.1  𝜆 =
𝐸𝑣

(1+𝑣)(1−2𝑣)
      μ =

E

2(1+v)
 

 

1. E and v in terms of λ and μ 

𝜆(1 − 2𝑣) = 2 ∗
𝐸

2(1+𝑣)
𝑣  

𝜆(1 − 2𝑣) = 2μv       𝒗 =
𝝀

𝟐(𝝀+𝛍)
 

 

𝐸 = μ ∗ 2(1 + v)  

𝐸 = 2μ (
2(𝜆+μ)

2(𝜆+μ)
+

𝜆

2(𝜆+μ)
)  

𝐸 =
2μ𝜆+2μ2+μ𝜆

𝜆
      𝑬 =

𝛍(𝟑𝝀+𝟐𝛍)

𝝀+𝛍
   

 

2. Elastic matrixes in terms of λ and μ 

See attached picture for calculations. The results are the following: 

Plane stress: 𝑬 =
𝜇(3𝜆+2μ)

3𝜆2+8𝜆μ+4𝜇2 [

4(𝜆 + 𝜇) 2𝜆 0
2𝜆 4(𝜆 + 𝜇) 0
0 0 𝜆 + 2𝜇

] 

Plane strain: 𝑬 = [
𝜆 + 2𝜇 𝜆 0

𝜆 𝜆 + 2𝜇 0
0 0 𝜇

] 

 

3. Lamé-splitting of the plain strain elastic matrix 

𝑬 = 𝑬𝝀 + 𝑬𝝁 = [
𝜆 𝜆 0
𝜆 𝜆 0
0 0 0

] + [
2𝜇 0 0
0 2𝜇 0
0 0 𝜇

] 

4. 𝑬𝝀 and 𝑬μ in terms of E and ν. 

𝑬𝜆 + 𝑬μ =
𝐸𝑣

(1 + 𝑣)(1 − 2𝑣)
[
1 1 0
1 1 0
0 0 0

] +
𝐸

2(1 + v)
[
2 0 0
0 2 0
0 0 1

] 

  



 

 

 

  



3.2  

 

 

1. Stiffness matrixes 𝑲𝑡𝑟𝑖  and 𝑲𝑏𝑎𝑟  for the two models. 

𝑲𝑡𝑟𝑖  : from the slides “CSMD_5-Linear_triangle” on CIMNE I use the property 

 

and write a simple script in Matlab to compute the stiffness matrix for the linear Turner triangle. The 

script is attached at the next page and the resulting stiffness matrix is 

𝑲𝑡𝑟𝑖 =
𝐸

4

[
 
 
 
 
 

3 1 −2 −1 −1 0
1 3 0 −1 −1 −2

−2 0 2 0 0 0
−1 −1 0 1 1 0
−1 −1 0 1 1 0
0 −2 0 0 0 2 ]

 
 
 
 
 

 

𝑲𝑏𝑎𝑟  : to compute the stiffness matrix for the system of bars I also write a simple script in Matlab 

that computes the stiffness matric for each element, and then I assemble them after their numbering 

of nodes and bars. This is also attached at the next page. 

𝑲𝑏𝑎𝑟 =
𝐸

4

[
 
 
 
 
 
 

4𝐴2 0 −4𝐴2 0 0 0
0 4𝐴1 0 0 0 −4𝐴1

−4𝐴2 0 √2𝐴3 + 𝐴2 −√2𝐴3 −√2𝐴3 √2𝐴3

0 0 −√2𝐴3 √2𝐴3 √2𝐴3 −√2𝐴3

0 0 −√2𝐴3 √2𝐴3 √2𝐴3 −√2𝐴3

0 −4𝐴1 √2𝐴3 −√2𝐴3 −√2𝐴3 √2𝐴3 + 𝐴1]
 
 
 
 
 
 

 

  



Script for computing K_tri: 

clear 
a=1; 
h=1; 
A=0.5*a^2; 

 
syms E 
x1=0;   %x-position node 1 
y1=0;   %y-position node 1 
x2=a;   %x-posotion node 2 
y2=0;   %y-position node 2 
x3=0;   %x-position node 3 
y3=a;   %y-position node 3 

  
x13=x1-x3; 
x21=x2-x1; 
x32=x3-x2; 

  
y23=y2-y3; 
y31=y3-y1; 
y12=y1-y2; 

  
E_mat=[E 0 0;0 E 0;0 0 0.5*E];  %v=0 
B=[y23 0 y31 0 y12 0;0 x32 0 x13 0 x21;x32 y23 x13 y31 x21 y12]; 
B_=transpose(B); 

  
K_tri=(h/(4*A))*B_*E_mat*B 

 

Script for computing K_bar: 

clear 

  
syms E A 
angle=3*pi/4; %angle each bar. In this case bar 3 
c=cos(angle); 
s=sin(angle); 

  
K=E*A*[c^2 s*c -c^2 -c*s;s*c s^2 -s*c -s^2;-c^2 -s*c c^2 s*c;-s*c -s^2 s*c s^2]; 

  



2. 𝑲𝒕𝒓𝒊 = 𝑲𝒃𝒂𝒓? 

These two stiffness matrices can obviously not be the same because they represent two different 

systems. But they can be made to have more similar values by changing the actual parameters. One 

way to do this is to make equations with values from one matrix and from the other matrix with the 

corresponding entry. For example: 

Entry 1,1:  3 = 4𝐴2 

Entry 1,3:  −2 = −4𝐴2 

Entry 3,3:  2 = √2𝐴3 + 𝐴2 

This will make a set of equations, which can not be solved because these are two different systems, 

BUT they can be used to make the stiffness matrices more similar. 

 

3. Why these stiffness matrices are not equal 

As said in the previous section, the two matrices represent the stiffness of two different systems. For 

the case with the solid linear triangle we have stiffness contribution from the whole continuous area. 

In the case of the bar structure, we only have contribution to stiffness along the bars. By physical 

sense this could be explained by that the solid triangle will have contribution in the whole area, but 

as for the bars they could only take up axial forces in compression and tension. 

 

4. ν≠0 

When ν≠0 we will have nonzero values in entries (1,2), (2,1). This will affect the stiffness matrices 

which is a product of a matrix with geometric properties and the elastic matrix. With this affection 

we would, normally, have more nonzero entries in the stiffness matrix than if ν=0. 

 


