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ASSIGNMENT 3.1

Suppose that the structural material is isotropic, with elastic modulus E and Poisson’s ratio ν.
The in-plane stress-strain relations for plane stress and plane strain as given in any textbook
on elasticity are:

pl ane str ess :

 σxx

σy y

σx y

= E

1−ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 εxx

εy y

2εx y

 (0.1)

pl ane str ai n :

 σxx

σy y

σx y

= E

(1+ν)(1−2ν)

 1−ν ν 0
ν 1−ν 0
0 0 1−2ν

2

 εxx

εy y

2εx y

 (0.2)

a) Show that the constitutive matrix of plane strain can be formally obtained by replacing E by
a fictitious modulus E* and ν by a fictitious Poisson’s ratio ν∗ in the plane stress constitutive
matrix. Find the expression of E* and ν∗ in terms of E and ν.

Solution:
Using the next two equations:

εxx = 1−ν2

E

[
σxx −

( ν

1−ν

)
σy y

]
(0.3)

εy y = 1−ν2

E

[
σy y −

( ν

1−ν

)
σxx

]
(0.4)

Then, these equations can be reduced using E∗ and ν∗ as:

εxx = 1

E∗
[
σxx −ν∗σy y

]
(0.5)

εy y = 1

E∗
[
σy y −ν∗σxx

]
(0.6)

where:

E∗ = E

1−ν2 (0.7)

ν∗ = ν

1−ν
(0.8)

2



Now, considering the plane stress matrix of equation 0.1 and the mechanical properties of
the equations 0.7 and 0.8 as: σxx

σy y

σx y

= E∗

1−ν∗2

 1 ν∗ 0
ν∗ 1 0
0 0 1−ν∗

2


 εxx

εy y

2εx y


Performing the corresponding substitutions:

E

(1−ν2)
(
1− (

ν
1−ν

)2
)
 1 ν

1−ν 0
ν

1−ν 1 0
0 0 1

2

(
1− ν

1−ν
)


E

(1−ν)(1+ν)
(
1− ν

1−ν
)(

1+ ν
1−ν

)
(1−ν)

 1−ν ν 0
ν 1−ν 0
0 0 1

2 (1−2ν)


E

(1−ν)(1+ν)
(1−ν−ν

1−ν
)(1+ν−ν

1−ν
)

(1−ν)

 1−ν ν 0
ν 1−ν 0
0 0 1

2 (1−2ν)


E(1−ν)(1−ν)

(1−ν)(1+ν) (1−2ν) (1)(1−ν)

 1−ν ν 0
ν 1−ν 0
0 0 1

2 (1−2ν)


 σxx

σy y

σx y

= E

(1+ν) (1−2ν)

 1−ν ν 0
ν 1−ν 0
0 0 1

2 (1−2ν)

 εxx

εy y

2εx y


 σxx

σy y

σx y

= E(1−ν)

(1+ν) (1−2ν)

 1 ν
1−ν 0

ν
1−ν 1 0
0 0 1

2
1−2ν
(1−ν)


 εxx

εy y

2εx y


which corresponds to the equation of the plane strain constitutive matrix.

b) Do also the inverse process: go from plane strain to plain stress by replacing a fictitious
modulus and Poisson’s ratio in the plane strain constitutive matrix.
To consider the opposite process, it is needed to consider the next expressions:

E∗ = E(1+2ν)

(1+ν)2 (0.9)

ν∗ = ν

1+ν
(0.10)

In the same way, it is needed to substitute the initial plane strain constitutive matrix :
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 σxx

σy y

σx y

= E∗

(1+ν∗)(1−2ν∗)

 1−ν∗ ν∗ 0
ν∗ 1−ν∗ 0
0 0 1−2ν∗

2


 εxx

εy y

2εx y


E(1+2ν)

(1+ν)2
(
1+ ν

1+ν
)(

1−2 ν
1+ν

)
 1− ν

1+ν
ν

1+ν 0
ν

1+ν 1− ν
1+ν 0

0 0 1
2

(
1−2 ν

1+ν
)


E(1+2ν)(1+ν)(1+ν)

(1+ν)2(1+2ν)(1−ν)

 1
1+ν

ν
1+ν 0

ν
1+ν

1
1+ν 0

0 0 1
2

(1−ν
1+ν

)


Finally the plane stress constitutive matrix is achieved: σxx

σy y

σx y

= E

(1−ν2)

 1 ν 0
ν 1 0
0 0 1

2 (1−ν)

 εxx

εy y

2εx y



ASSIGNMENT 3.2

In the finite element formulation of near incompressible isotropic materials (as well as plastic-
ity and viscoelasticity) it is convenient to use the so-called Lamé constants λ and µ instead of
E and ν in the constitutive equations. Both λ and µ have the physical dimension of stress and
are related to E and ν by:

λ= Eν

(1+ν)(1−2ν)
(0.11)

µ=G = E

2(1+ν)
(0.12)

a) Find the inverse relations for E, ν in terms of λ, ν.
Solution a):

Now, to obtain a relationship of the mechanical properties in terms of the Lamé parameters,
it is convenient to solve a system of equations by substituting some of the above equations,
in that sense first the quotient of µ and λ is performed as:

µ

λ
= E/2(1+ν)

Eν/(1+ν)(1−2ν)
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µ

λ
= 1−2ν

2ν
2νµ+2νλ=λ

ν= 1

2

λ

λ+µ

Substituting ν in the equation related to G , we obtain:

µ=G = E

2(1+ν)

µ= E

2
(
1+ 1

2
λ

λ+µ
)

µ= E

2
[
(λ+µ)+λ

]
/λ+µ

µ= E(λ+µ)

3λ+2µ

E = µ(3λ+2µ)

λ+µ

Finally the mechanical properties in terms of the Lamé parameters are:

ν= 1

2

λ

λ+µ
E = µ(3λ+2µ)

λ+µ

b) Express the elastic matrix for plane stress and plane strain cases in terms of λ,µ.

Solution b):
By using the relationship of mechanical properties and Lamé parameters, it is easy to obtain
the constitutive plane stress matrix as:

E = E

1−ν2

 1 ν 0
ν 1 0
0 0 1−ν

2



= µ(3λ+2µ)

λ+µ

1

1−
(

1
2

λ
λ+µ

)2

 1 1
2

λ
λ+µ 0

1
2

λ
λ+µ 1 0

0 0 1
2 (1− 1

2
λ

λ+µ )
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= µ(3λ+2µ)

λ+µ

1(
1− 1

2
λ

λ+µ
)(

1+ 1
2

λ
λ+µ

)


1 1
2

λ
λ+µ 0

1
2

λ
λ+µ 1 0

0 0
2(λ+µ)−λ

2(λ+µ)

2



= 4µ(λ+µ)

(λ+2µ)

 1 1
2

λ
λ+µ 0

1
2

λ
λ+µ 1 0

0 0 1
4


= µ

λ+2µ

 4(λ+µ) 2λ 0
2λ 4(λ+µ) 0
0 0 λ+µ


Now, substituting in the plane strain constitutive matrix:

E = E

(1+ν)(1−2ν)

 1−ν ν 0
ν 1−ν 0
0 0 1−2ν

2



= µ(3λ+2µ)/(λ+µ)

(1+ 1
2

λ
λ+µ )(1−2 1

2
λ

λ+µ )


1− 1

2
λ

λ+µ
1
2

λ
λ+µ 0

1
2

λ
λ+µ 1− 1

2
λ

λ+µ 0

0 0
1−2 1

2
λ

λ+µ
2



= µ(3λ+2µ)/(λ+µ)
2(λ+µ)+λ

2(λ+µ)
λ+µ−λ
λ+µ


2(λ+µ)−λ

2(λ+µ)
1
2

λ
λ+µ 0

1
2

λ
λ+µ

2(λ+µ)−λ
2(λ+µ) 0

0 0
(λ+µ)−λ
λ+µ

2


=

 2µ+λ λ 0
λ 2µ+λ 0
0 0 µ
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c) Split the stress-strain matrix E of plane strain as:

E = Eµ+Eλ

in which Eµ and Eλ contain only µ and λ, respectively. This is the Lamé λ, µ splitting of the
plane strain constitutive equations, which leads to the so-called B-bar formulation of near-
incompressible finite elements.

Solution c):

Considering the plane-strain constitutive matrix obtained above: 2µ+λ λ 0
λ 2µ+λ 0
0 0 µ



=
 2µ 0 0

0 2µ 0
0 0 µ

+
 λ λ 0

λ λ 0
0 0 0



=µ

 2 0 0
0 2 0
0 0 1

+λ

 1 1 0
1 1 0
0 0 0


d) Express Eµ and Eλ also in terms of E and ν.

Solution d):

By using the previous result, it is easy to substitute the values of ν and λ in terms of E and ν

as:

Eµ = E

2(1+ν)

 2 0 0
0 2 0
0 0 1

 Eλ =
Eν

(1+ν)(1−2ν)

 1 1 0
1 1 0
0 0 0
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ASSIGNMENT 3.3

Consider a plane triangular domain of thickness h, with horizontal and vertical edges have
length a. Let’s consider for simplicity a = h = 1. The material parameters are E, ν. Initially ν is
set to zero. Two structural models are considered for this problem as depicted in the figure:

• A plane linear Turner triangle with the same dimensions.

• A set of three bar elements placed over the edges of the triangular domain. The cross
sections for the bars are A1 = A2 and A3.

Figure 0.1: Problem Comparison: a) Turner triangle (left) - b) Three bars discretization (right)

a) Calculate the stiffness matrix K e for both models.
Solution a):

• Three Bars:

The elemental global matrix for truss elements is:


fxi

fyi

fx j

fy j

 = E A

L


c2 sc −c2 −sc
sc s2 −sc −s2

−c2 −sc c2 sc
−sc −s2 sc s2




uxi

uyi

ux j

uy j

 (0.13)

Now, particularizing the elemental global matrix for each bar of the problem:

– Bar 1
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* Nodes: 1 - 3

* θ = 90

* cos(θ) = 0

* sin(θ) = 1

* Area: A1

* Young Modulus: E

* Length: a = 1


fx1

fy1

fx3

fy3

 = E A1


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1




ux1

uy1

ux3

uy3

 (0.14)

– Bar 2

* Nodes: 1 - 2

* θ = 0

* cos(θ) = cos(0) = 1

* sin(θ) = sin(0) = 0

* Area: A2

* Young Modulus: E

* Length: a


fx1

fy1

fx2

fy2

 = E A2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




ux1

uy1

ux2

uy2

 (0.15)

– Bar 3

* Nodes: 2 - 3

* θ = (135)

* cos(θ) = cos(135) =−p2/2

* sin(θ) = sin(135) =p
2/2

* Area: A3

* Young Modulus: E

* Length: a/cos(45) = 2a/
p

2


fx2

fy2

fx3

fy3

 = E A3
p

2

4


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1




ux2

uy2

ux3

uy3

 (0.16)
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Expanding the three matrices to the total of degrees of freedom and then adding
them, we obtain the global stiffness matrix of the system, the result is:

Ke = E



A2 0 −A2 0 0 0

A1 0 0 0 −A1

A2 + A3
p

2
4 − A3

p
2

4 − A3
p

2
4

A3
p

2
4

A3
p

2
4

A3
p

2
4 − A3

p
2

4

SY M A3
p

2
4 − A3

p
2

4

A1 + A3
p

2
4


(0.17)

• Turner Triangle:

The element stiffness matrix of the “Turner Triangle” is defined as:

Ke =
∫
Ωe

hBT EBdΩ (0.18)

As B,E and A are constants, and also h = 1 and a = 1, the expression is integrated as:

Ke = 1

4A



y23 0 x32

0 x32 y23

y31 0 x13

0 x13 y31

y12 0 x21

0 x21 y12


 E11 E12 E13

E21 E22 E23

E31 E32 E33

 y23 0 y31 0 y12 0
0 x32 0 x13 0 x21

x32 y23 x13 y31 x21 y12



(0.19)
where x j k = x j −xk and y j k = y j − yk .

Node X Y
1 0.0 0.0
2 a=1.0 0.0
3 0.0 a=1.0

Table 0.1: Nodal coordinates.

Substituting the coordinates into the above equation:
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Ke = 1

4A



−1.0 0.0 −1.0
0.0 −1.0 −1.0
1.0 0.0 0.0
0.0 0.0 1.0
0.0 0.0 1.0
0.0 1.0 0.0


 E11 E12 E13

E21 E22 E23

E31 E32 E33

 −1.0 0.0 1.0 0.0 0.0 0.0
0.0 −1.0 0.0 0.0 0.0 1.0
−1.0 −1.0 0.0 1.0 1.0 0.0



Performing the corresponding matrix multiplications:

Ke = 1

4A



E11 +2E13 +E33 E12 +E13 +E23 +E33 −E11 −E13 −E13 −E33 −E13 −E33 −E12 −E23

E22 +2E23 +E33 −E12 −E13 −E23 −E33 −E23 −E33 −E22 −E23

E11 E13 E13 E12

E33 E33 E23

SY M E33 E23

E22


Considering the plane stress constitutive matrix:

E

1−ν2

 1 ν 0
ν 1 0
0 0 1−ν

2

 (0.20)

considering initially ν= 0 and substituting the corresponding values:

Ke = E

8A



3 1 −2 −1 −1 0
3 0 −1 −1 −2

2 0 0 0
1 1 0

SY M 1 0
2

 (0.21)
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b) Is there any set of values for cross sections A1 = A2 = A and A3 = A
′

to make both stiffness
matrix equivalent: Kbar = Ktriangle? If not, which are these values to make them as similar as
possible?

Solution b):
Taking into account the cross sections equal for bar 1 and bar 2, the stiffness matrix of the
first system is modified as next:

Ke = E



A 0 −A 0 0 0

A 0 0 0 −A

A+ A
′p

2
4 − A

′p
2

4 − A
′p

2
4

A
′p

2
4

A
′p

2
4

A
′p

2
4 − A

′p
2

4

SY M A
′p

2
4 − A

′p
2

4

A+ A
′p

2
4


(0.22)

In order to obtain a matrix formulation composed by trusses that attempts to simulate the
behavior of the Turner’s continuum triangle, the procedure will consist in find cross sections
of the bars that compensates the stiffness of the triangular element. Comparing equations
0.23 and 0.22, it can be seen that both are very different, in that sense the equations proposed
to obtain these area values consist in compare the terms of the matrix diagonal, because of
its importance giving the main rigidity to the system. The equations reduced to three possi-
bilities1:

Case 1:

K11 → E A = 3E

8A∗ → A = 3

4

K33 → E

(
A+ A

′p
2

4

)
= 2E

8A∗ → A
′ =−

p
2

2

Case 2:

K11 → A = 3

4

K44 → E

(
A

′p
2

4

)
= E

8A∗ → A
′ =

p
2

2

Case 3:

K44 → E

(
A

′p
2

4

)
= E

8A∗ → A
′ =

p
2

2

1Note that A∗ = 1/2 because it corresponds to the triangle area.
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K33 → E

(
A+ A

′p
2

4

)
= 2E

8A∗ → A = 1

4

It is interesting to observe that the first case results in a negative area A
′
, so is not physi-

cally possible. The cases two and three give different possibilities of similitude between the
bar formulation and the continuum triangle, both are not equal, but the diagonal terms are
almost the same:

Case 2:

Kbar 2 =
E

4



3 0 −3 0 0 0
3 0 0 0 −3

4 −1 −1 1
1 1 −1

SY M 1 −1
1



Case 3:

Kbar 3 =
E

4



1 0 −1 0 0 0
1 0 0 0 −1

2 −1 −1 1
1 1 −1

SY M 1 −1
1



Compared to the Turner’s triangle:

Ke
tr i ang le =

E

4



3 1 −2 −1 −1 0
3 0 −1 −1 −2

2 0 0 0
1 1 0

SY M 1 0
2


c) Why these two stiffness matrix are not equivalent? Find a physical explanation.

Solution c):

Each of the formulations pretends model different mechanical behaviors. As the bar (or truss
in this case) is obtained by considering a linear element from one node to another. Its formu-
lation it is based on consider material properties, as the elastic modulus E , and geometric, as
the area A, and it can be placed in a global system due to the rotation matrix implied. This is a
good analysis when the model presents lots of bars, e.g. the trusses of ceilings in construction.

The Turner’s triangle is a different approach of analysis, by consider instead of a linear ele-
ment, but a continuous element with the shape of a triangle. This element can be represented
as a plate because it has a thickness, in comparison with the three bars triangle modeled by
truss elements, which it is empty in the interior. Even though both analysis consider linear
numerical approximation, they can not be completely taken as equal because of the type of
approach used in their formulation.
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The most relevant physical explanation of the difference behavior is because both elements
works modeling different mechanical systems, as trusses (roofs ceilings, steel bridges, elec-
trical towers, etc.) using the bar matrix, or continuum plates (walls, continuum beams, aero-
nautical parts, etc.) using the Turner’s triangle.

d) Solve question a) considering ν 6= 0 and extract some conclusions

Solution d):

As can be seen in the assembled matrix of the three bars system, there is no Poisson effect
included because of its original formulation that is presented in the beginning of this assign-
ment. In that sense, the only modified matrix corresponds to the Turner’s triangle, that is
presented next:

Ke = E

8A(1−ν2)



3−ν 1+ν −2 ν−1 ν−1 −2ν
3−ν −2ν ν−1 ν−1 −2

2 0 0 2ν
1−ν 1−ν 0

SY M 1−ν 0
2

 (0.23)

As the equation above shows, the Poisson coefficient affects the stiffness increasing most of
the components of the matrix due the value 1

1−ν2 outside the integral. And also, the terms
that forms a product with ν inside the matrix, instead of being zero now presents a value that
increases the rigidity of that component.
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