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1 Assignment 3.1

1.1 a)

The choice of triangular elements for the analysis of problems involving two dimensions is suit-
able for this geometry and other arbitrarily shaped domains as it allows a close approximation
to their shape. The displacement field on the triangular nodes is defined in terms of their two
components u and v in the x and y directions, respectively, with the same shape function to
represent both displacements.

If writing a relation between the coordinates of the nodes of an element and the Cartesian
coordinates, it is obtained that

y = Niyi + Njy; + Ngys

Therefore the shape functions are chosen such that N; must be a function which is unity at
vertex 7. Specifically,
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With A° being the area of the element and

i = TjYr — TkYj
bi = y; — Uk (3)
C; =T — Ty

Now that the shape functions have been stated cleary, it is time to go further on expressing

the weighted residual statement for the equilibrium in terms of the stresses. The stresses are
defined as
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Im Will be (particularized for the triangular element)

o te bibjdy1 + cicjdss  bicjdia + bjcidss
(i)

ILm —

Cibjdgl + bidegg bibjdgg + CideQQ



It is important to note that this matrix will always be symmetric as dyo = ds;. Now, the whole
domain is depicted in Fig. (1 with each node and element numbered.

1

Figure 1: Element descriptionn.

The coordinates of the triangle are computed below in a matrix X that will be later used in
the Matlab code the matrix.

X=|" (i=1,23) = (6)
yi 01 2

Then, the connectivity matrix is simply constructed by allocating in each row the global num-
bering of the nodes that form each element. The connectivity matrix is straightforward.

T={1 2 3} (7)

For the triangle element,

Now it is possible to construct the stiffness matrices for the element. In doing so, it is obtained
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Given the area of the element (2) and its thickness (1), the matrix is obtained rapidly with
Matlab. The code may be seen in the Annex and it has been adapted from another code
developed in the subject "Finite Element Method"
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1.2 b)
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Because of the properties of the shape functions, the sum of the entries in each row and column
is zero. This can be easily checked with Matlab or a calculator once the matrix is obtained.
The reason is because the linear shape function takes values of unity on the current node and

zero at the others.

2 Assignment 3.2

2.1 a)

Returning to equations (4f) and , the matrix for the linear triangle is obtained straighforwar
considering that v is zero and both the length and the thickness are 1.
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N =

K¢, will be (particularized for the triangular element)

Ke ( te ) bibjdll + Cidegg bidelg + bjcidgg <1> blb] + CZ'C]'/2 bjCi/Q (11)
lm — e =15
44 Cibjdgl + bidegg blbjd53 + Cidegg bicj/Z blbj/Q
Introducing this data into the Matlab code, the stiffness matrix is simply
0.75 025 —-050 —0.25 —-0.25 0
0.25 0.75 0 —-0.25 —0.25 —0.5
—0.5 0 0.50 0 0 0
K=E (12)

—-0.25 —0.25 0 025 025 -0

—-0.25 —0.25 0 025 025 -0

0 —0.5 0 0 0 0.5

We can clearly see that this matrix is singular.

2.2 b)

As for the elemental bars structure, it can be seen from previous assignments that the individual
stiffness matrices are

0 0
K = K§) = —K{) = —K{}) = (BA)) (13)
0 1
(2) (2) (2) (2) 10
Ku = K22 = —K12 = —hHaop = (EAQ) (14)
0 0




K = K33 = —K{) = —K3) = N (15)
—0.5 0.5
AQ 0 —Az 0 0 0
0 Ay 0 0 —A;
A A A A
w_p|™ 0 ATk ik Tas A (16)
0 0 _ Az Az Az _ Az
2v/2 2v/2 2v/2 2v/2
0 0 _ Az Az Az _ Az
2v2 2v2 2v2 2v2
A A A A
0 A Sk ek ik At gl
Now if substituting A; = Ay = A, A3 = A’ the matrix is
A 0 —A 0 0 0
0 A 0 0 0 —A
A/ A/ A/ A/
K=F A0 Atss s T 22 (17)
0 0 . Al Al A . A’
2v2 2v2 2v2 2v2
0 0 A A’ A’ _ A
2V2 2v2 2v2 2v2
AI A/ A/ AI
0 A 55 s Taa ATl

2.3 ¢)

This matrix cannot be made equivalent to the one of the Turner triangle as there are are more
zero entries in the bar structure, which is to be expected. If we were to put A = 1/2, A’ = 1//2,
then we would obtain several values in the diagonal term to be equal, although not all of them.
Obviously as the two matrices represent the global stiffness of different structural problems (one
of bars and another of a triangle structure as a whole) the problem cannot be made equivalent.
The bar triangle is constructed with hinges, which means that the elements can only hold axial
stresses and boundary conditions applied a the nodes only, whereas the Turner triangle can be
applied distributed loads along its perimeter. Therefore there will be more zero elements in this
matrix as in the Turner triangle, in which a prescribed displacement in any point will affect the
whole structure, whereas the same displacement in the bar structure may produce little effect.
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2.4 d)

If considering again equation ([4), it can be seen that the Poisson ratio relates the strains in the
different coordinates to the stresses. That is, if the Poisson ratio is zero, the stresses are given
by a diagonal matrix, meaning that only a displacement in the direction of the axis will cause
stresses in that axis. If the Poisson ratio is non-zero, the whole structure will be more stiff as
stresses will appear even if the strains are not in the same direction. Incorporating now the
Poisson ratio, the matrix is given by Matlab such that

0.75—% %+O.25 —0.50 %—0.25 %—0.25 —%
%—1-0.25 0.75—% —% %—0.25 %—0.25 —0.5
E —0.5 - 0.50 0 0 L
K= 2 ’ (18)
— U v v v v
702 7-025 0 025—-7 025—-7 =0
% —0.25 % —0.25 0 0.25 — % 0.25 — % —0
I —% —0.5 % 0 0 0.5_
A Appendix:Code
format long
clear all
E = [100 25 0; 25 100 0; O O 50];
cC=1[00; 31; 2 2];
T=1[12 3];
for i = 1:1
[Area(i),A{i}] = elem _area(C,T(i,:));
end
for i = 1:3
for j = 1:3
K{i,j} = matrix_K(i,j,Area(l),A{1},E);
end
end

Glob = [K{1,1} K{1,2} K{1,3};
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K{2,1} K{2,2} K{2,3%}; ...
K{3,1} K{3,2} K{3,3}];

function [Area,A] = elem area(C,T)

M= [1 C(T(1),1) C(T(1),2); 1 C(T(2),1) C(T(2),2);1 C(T(3),1) C(T(3),2)];

Area = 0.5%det (M) ;

bl = C(T(2),2) - C(T(3),2);

cl = C(T(3),1) - C(T(2),1);

b2 = C(T(3),2) - C(T(1),2);

c2 = C(T(1),1) - C(T(3),1);

b3 = C(T(1),2) - C(T(2),2);

c3 = C(T(2),1) - C(T(1),1);

A=1[000; bl b2 b3; cl1 c2 c3];

end

function K = matrix K(i,j,Area,A,E)

K = [A(2,i)*A(2,j)*E(1,1) + A(3,i)*A(3,j)*E(3,3) ...
A(2,1)*A(3,j)*E(1,2) + A(2,j)*A(3,1)*E(3,3); ...
A(3,1)*A(2,j)*E(2,1) + A(2,1)*A(3,j)*E(3,3) ...
A(2,1)%A(2, )*E(3,3) + A(3,1)*A(3,1)*E(2,2)1;

K = K/(4*Area) ;
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