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Assignment 3.1

On “The Plane Stress Problem”:
In isotropic elastic materials (as well as in plasticity and viscoelasticity) it is convenient to use the
so-called Lamé constants λ and µ instead of E and ν in the constitutive equations. Both λ and µ
have the physical dimension of stress and are related to E and ν by

λ =
Eν

(1 + ν)(1− 2ν)
µ = G =

E

2(1 + ν)

1. Find the inverse relations for E, ν in terms of λ, µ.

ν =
λ

2(µ+ λ)
E =

µ(3µ+ 2λ)

µ+ λ

2. Express the elastic matrix for plane stress and plane strain cases in terms of λ, µ.
Elastic matrix for plane stress:

E

1− ν2

1 ν 0
ν 1 0
0 0 1− ν/2

 → 8µ3 + 20λµ2 + 12λ2µ

4µ2 + 3λ2

 1 λ/2(µ+ λ) 0
λ/2(µ+ λ) 1 0

0 0 2µ+ λ/4(µ+ λ)


Elastic matrix for plane strain:

E(1− ν)

(1 + ν)(1− 2ν)

 1 ν/(1− ν) 0
ν/(1− ν) 1 0

0 0 (1− 2ν)/2(1− ν)

 →
2µ+ λ λ 0

λ 2µ+ λ 0
0 0 µ


3. Split the stress-strain matrix E for plane strain as

E = Eλ + Eµ

in which Eµ and Eλ contain only µ and λ, respectively.

This is the Lamé λ,µ splitting of the plane strain constitutive equations, which leads to the
so-called B-bar formulation of near-incompressible finite elements.

E =

λ λ 0
λ λ 0
0 0 0

 +

2µ 0 0
0 2µ 0
0 0 µ


4. Express Eλ and Eµ also in terms of E and ν.

E =
Eν

(1 + ν)(1− 2ν)

1 1 0
1 1 0
0 0 0

 +
E

2(1 + ν)

2 0 0
0 2 0
0 0 1


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Assignment 3.2

On “The 3-node Plane Stress Triangle”:
Consider a plane triangular domain of thickness h, with horizontal and vertical edges of length a.
Let us consider for simplicity a = 1, h = 1. The material parameters are E, ν. Initially ν is set to
zero. Two discrete structural models are considered as depicted in the figure:

(a) A plane linear Turner triangle with the same dimensions.

(b) A set of three bar elements placed over the edges of the triangular domain. The cross sections
for the bars are A1 = A2 and A3.

1. Calculate the stiffness matrices Ktri and Kbar for both discrete models.

Ktri =

∫
Ωe

hBtEB dΩ Ktri = hBtEB

∫
Ωe

dΩ

Defining B as:
∂N1

∂x
0 ∂N2

∂x
0 ∂N3

∂x
0

0 ∂N1

∂y
0 ∂N2

∂y
0 ∂N3

∂y

∂N1

∂y
∂N1

∂x
∂N2

∂y
∂N2

∂x
∂N3

∂y
∂N3

∂x

 J = J−1 =

[
1 0

0 1

] [
∂Ni

∂x

∂Ni

∂y

]
= [J−1]

[
∂Ni

∂ξ

∂Ni

∂η

]

With N1 = 1− ξ − η, N2 = ξ, N3 = η

=
h

2


−1 0 −1
0 −1 −1
1 0 0
0 0 1
0 0 1
0 1 0


E 0 0

0 E 0

0 0
E

2


−1 0 1 0 0 0

0 −1 0 0 0 1
−1 −1 0 1 1 0



Ktri =


3E/4 E/4 −E/2 −E/4 −E/4 0
E/4 3E/4 0 −E/4 −E/4 −E/2
−E/2 0 E/2 0 0 0
−E/4 −E/4 0 E/4 E/4 0
−E/4 −E/4 0 E/4 E/4 0

0 −E/2 0 0 0 E/2


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For Ktri, taking accout different bar elements with A1 = A2 and A3

K(1) = E


0 0 0 0 0 0
0 A 0 0 0 −A
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −A 0 0 0 A

 K(2) = E


A 0 −A 0 0 0
0 0 0 0 0 0
−A 0 A 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



K(3) = E



0 0 0 0 0 0
0 0 0 0 0 0

0 0 A3/2
√

2 −A3/2
√

2 −A3/2
√

2 A3/2
√

2

0 0 −A3/2
√

2 A3/2
√

2 A3/2
√

2 −A3/2
√

2

0 0 −A3/2
√

2 A3/2
√

2 A3/2
√

2 −A3/2
√

2

0 0 A3/2
√

2 −A3/2
√

2 −A3/2
√

2 A3/2
√

2



Kbar = E



A 0 −A 0 0 0
0 A 0 0 0 −A
−A 0 A+ A3/2

√
2 −A3/2

√
2 −A3/2

√
2 A3/2

√
2

0 0 −A3/2
√

2 A3/2
√

2 A3/2
√

2 −A3/2
√

2

0 0 −A3/2
√

2 A3/2
√

2 A3/2
√

2 −A3/2
√

2

0 −A A3/2
√

2 −A3/2
√

2 −A3/2
√

2 A+ A3/2
√

2


2. Is there any set of values for the cross sections A1 = A2 and A3 to make both stiffness matrix

equivalent: Kbar = Ktri If not, which are the values that make them more similar?

The values A3 = −E
√

2 and A = 3E/4 are the ones that make the stiffness matrices to be
more similar.

3. Why these two stiffness matrices are not equal? Find a physical explanation.

Both matrices are different, due to the location of the information for each element (bars and
solid triangle).

In terms of information, both matrix contains 14 values with no data inside the matrix. The
difference lives on their location. Meanwhile, the solid triangle element, has distributed non-
zero values, on the truss structure that zeros values are concentrate on the interior of the
triangular shape.

In the following question, taking ν different from zero, we can appreciate how the stiffness value
increase for Ktri, arising the maximun information for computing an accurate solution.

4. Considering nowidering ν 6= 0 and extract some conclusions.

With value ν different of zero, we recover more information for Ktri. The stiffness matrix is
recovering 8 values, deffining higher accuracy on the solution.
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