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Assignment 3.1 
 
Suppose that the structural material is isotropic, with elastic modulus E and Poisson’s ratio ν. The 
in-plane stress-strain relations for plane stress and plane strain as given in any textbook on elasticity 
are 

a) Show that the constitutive matrix of plane strain can be formally obtained by replacing E by a 
fictitious modulus 𝐸∗ and ν by a fictitious Poisson’s ratio 𝜈∗ in the plane stress constitutive 
matrix. Find the expression of 𝐸∗	and 𝜈∗ in terms of E and ν. 

b) Do also the inverse process: go from plane strain to plain stress by replacing a fictitious modulus 
and Poisson’s ratio in the plane strain constitutive matrix.  

 

To be able to find this two new expression for E and ν, in each case the same stress component 
of the stresses from plane stress and strain is going to be used, in this case 𝜎&&. From them, the 
members that multiply 𝜀&&	and 𝜀)) will be contrasted in order to obtain the new expressions.  
Then it will be checked that using the new variables 𝐸∗	and 𝜈∗, plain strain can be obtained 
from plain stress and the opposite in each case.  

 
(Solutions attached in next pages)











Assignment 3.2 
 
In the finite element formulation of near incompressible isotropic materials, it is convenient to use 
the so-called Lamé constants 𝜆 and 𝜇 instead of  E and 𝜈 in the constitutive equations. Both 𝜆 and 

𝜇 have the physical dimension of stress and are related to E and 𝜈 by  
a) Find the inverse relations for E and 𝜈 in terms of 𝜆 and 𝜇. 

Using the expressions above, new expression for E and 𝜈	will be obtained in terms of 𝜆 and 𝜇. 
 

b) Express the elastic matrix for plane stress and plane strain cases in terms of 𝜆 and 𝜇. 
Substituting the expressions obtained in point a for E and 𝜈 in the elastic matrix (see assignment 

3.1), new expressions in terms of 𝜆 and 𝜇 are obtained.  

For the plane strain matrix, it will be obtained a simpler expression due to the fact that 𝜆/𝜈 is 
equal to the value multiplying outside the hole matrix.  
 

c) Split the stress-strain matrix E of plane strain as 𝑬=𝑬𝜆+𝑬𝜇  in which 𝑬𝜆 and 𝑬𝜇 contain only 𝜆 

and 𝜇 respectively. This is the Lamé splitting of the plane strain constitutive equations, which 

leads to the so-called B.bar formulation of near-incompressible finite elements.  

 

From the obtained elastic matrix for plane strain it is not difficult to divide the matrix in two 

matrices according with the requests of the exercise.  

This new E matrix definition can be seen as a deviatoric + volumetric splitting. 
  

d) Express 𝐸) and 𝐸*	also in terms of E and 𝜈. 
Using the given expressions at the beginning of the exercise, an replacing 𝜆 and 𝜇 with them, 
the new way to expres 𝐸) and 𝐸* is obtained.  

 
(Solutions attached in next pages) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 









Assignment 3.3 
 
Consider a plane triangular domain of thickness h, with horizontal and vertical edges have length a. 
Let’s consider for simplicity a = h = 1. The material parameters are E,ν. Initially ν _is set to zero. 
Two structural models are considered for this problem as depicted in the figure:  

- A plane linear Turner triangle with the same dimension.  
- A set of three bar elements placed over the edges of the triangular domain. The cross 

sections for the bars are A1 = A2 and A3. 

 
a) Calculate the stiffness matrix Ke for both models.  

The Turner triangle is a three-node triangle with linear shape functions in which the degrees of 
freedom are located at the corners. The element stiffness matrix is calculated using the plane 
stress problem general formula, so that  

𝐾" = 𝐵%𝐸𝐵' ℎ𝑑Ω
+,

 

where h, the thickness is uniform over all the element.  
For the second case, the stiffness matrix calculation introduced in the Assignment 1, will be use 
in order to obtain 𝐾" for linear elements, in these case three bars.  

 
b)  Is there any set of values for cross sections A1=A2=A and A3=A’ to make both stiffness matrix 

equivalent: Kbar = Ktriangle? If not, which are these values to make them as similar as possible?  
 
c) Why these two stiffness matrix are not equivalent? Find a physical explanation.  
 
d) Solve question a) considering ν≠0 and extract some conclusions.  
 
 

(Solutions attached in next pages) 











c) Why these two stiffness matrix are not equivalent? Find a physical explanation.  

As it is known, in both cases the K stiffness matrix establish a relationship between the forces 

and the displacements at the nodes of the elements (𝐾𝑢 = 𝑓) that as it had been shown, it is 

not equal in both cases.  

First of all talking about the bar structure in 2D, the bar is the 2-node simplest finite element 

that can be characterized by two properties: one preferred dimension, much more larger than 

the other two (in this case the longitudinal dimension); and the fact that it resist an internal axial 

force along its longitudinal dimension. So that, each member of the truss, whose properties are 

uniform along the length, can be interpreted as a linear spring of stiffness 𝑘 =
𝐴𝐸

𝐿
. The stiffness 

matrix is computed for each bar element to later being assembled following the way they are 

joined in the total structure.  

Now, the Turner triangle is introduced in order to obtain the main differences between the 

cases. The Turner triangle is a 3-node element with linear shape functions that represent the 

simplest triangular element for the plane stress problem, that will no longer support just axial 

forces along its length, but two directional loads. To be able to introduce this new condition to 

the problem, new elements as the shape function or the strain-displacement matrices have to 

be added to the problem, as the constitutive matrix E in order to interpreted the behavior of 

the material over the element.  

Now, it is easily to understand that, such a different elements, 2-node with just axial loads and 

3-node material triangle in which the element support loads in both direction of the space can’t 

be interpreted as the same problem.  






