Krylov Methods

A (very) incomplete introduction

Riccardo Rossi

Real basics...

Let’s begin with a question: imagine that i have a given vector
r(x) =b— Ax

What does it mean to require r(x) = 0 ?

Real basics...

Let’s begin with a question: imagine that i have a given vector (of size N)
r(x):=b— Ax

What does it mean to require r(x) = 0 ?
ANSWER - it means that all of its components are zero...
...something that we can write as

r(x) -e; =0 Vi

THAT IS:
the space it lives in

of

Real basics...

But which basis? ANY !!

THAT IS: if {v, ... vy} form a basis of RY than a vector is zero if and only
ifr(x) - v; =0 Vi

IN A NUTSHELL, Krylov methods are all about constructing a basis (that
grows with the number of iterations until spanning the entire R") and
making the residual to be Orthogonal to such basis.

Krylov Subspace

Of course we have complete freeﬂom of “incrementally constructing” a space that
eventually describes the entire R

The space employed by Krylov techniques is known as “Krylov Subspace”, defined as
K;(A,b) = span{b,Ab,A*b ..., A'b}

Provided that the matrix A is invertible, and that b has a component wrt all of the
ellf\genvectors of A, such space will eventually grow with the iterations until coinciding with
R™Mn

Krylov techniques differe of the construction and properties of a basis of K;(4, b).

A propert{)shared by all of the methods in the KrKIov family is that they will converge (in
exact algebra) in at most N iterations (although they will typically converge way before)

Minimizing residual along a line

A tool very frequently used, is the

. Let’s ima%lne that we have a starting solution x, and a search
direction identified by a unit vector v

The idea is to choose a new x = xg + av such that |[r(x)]||* is minimal in a
choosen norm. One way to accomplish this, is to make the residual to be
ortogonal to the direction v, that is, to require that v - r(x) = 0

Using the definition we get
O=v-r(x) =v-(b—Axy — aAv) =v- (r(xy) — adv)
Solving for alpha

v-1r(xg)
a =

v-Av

Special Case of SPD matrices

If Ais SPD, we can define a functional ¥(x) := x*b — 2x*Ax (which we
will use both for CG and SD)

It is easy to see that:

1 suchthat Ax,, = b is the (only) minimum of ¥ (easy to prove
since A is SPD, hence v*Av > 0 for any non zero v)

2 The gradient of the function is VW = b — Ax = r(x) (obviously
zeroin VW (x,,) = 0)

Steepest Descent

(not a member of the Krylov Family)

The “ ”Is the first idea one may have. It Works as follows:

1 choose a starting point xy and use V¥ as search direction

b TP (x)) _ T(Xo)
PG ™ [l (o)
2 evaluate the minimum in the oéire)ction of v starting from x,, that is, compute
. vVrx
X1 =X¢g+av(witha = — A 2=, using the minimization formula in the previous
slides) vav
3 repeat until]ﬁ? <e€

SIMPLE but ... may be very slow (no guarantees it converges in k)

Why it takes long?

Simplest default with labels

e ——- 200 g

175 f/”f 175 {

150 4 150 7/ 1t

125 17t]

100]

075 | 075

050 { 050

025 | 025

S e A ran W0 0B o 0B 10 15 1 U5 2
Plot of ¥(x) = xb — 1/2x'Ax Plotof ¥(x) = xtb — 1/2x'Ax
a=(C 7)) p=() k=2 A=t 7)) b=() rw=10

Why it takes long?

200
1B g A2
150
157/
100
0751
050

025 1

0.00 . — -
000 025 050 075 100 125 150 175 200

Plot of ¥(x) = xb — 1/2x'Ax

A=(_31 _31) b=(%) k(A) = 2

Simplest default with labels
7 AN

200

L

175

150 ¥ 10

AR

135

N

100 1

075 1

0.50 1

025 1

'I]O[I ! ! ! - ! ! ! T
000 025 050 075 100 125 150 175 200

Plotof ¥(x) = xtb — 1/2x'Ax

1=(1) 5=() k=10

Why it takes long?

Simplest default mth labels Simplest default with labels

f’”’ =

175 | ==

200 =

150 1 150 ¥ 9%

125 1 151

100 1 100y

075 | 075 1

050 4 050 1

0.25 1
025 1

0.00 - ' M?l-ﬂ[l 025 050 l].?SI 100 | 125].50].?5 200
000 025 050 075 100 125 150 175 200
Plot of ¥(x) = xb — 1/2x'Ax Plotof ¥(x) = xtb — 1/2x'Ax
/3 -1 1 B /11 -9 1 B
A= (—1 3) b= (z) k(4) =2 A= (—9 11) b= (2) k(4) =10

Conjugate Gradient

The ” method can be understood as an improvement over the
“steepest descent”. It Works as follows:

1 - choose a starting point xo and use vy = 1(xg) = 1 as first search direction (as the
steepest descent!)

2 X;j = Xo,V; = Dy .
— : . vo'r(xg)
3-Xj11 = X; + A v; (with @ = _W |
4 - choose a new update direction as v, 1:=r(Xj+1) + Xk=o BixVk
where the f;, are chosen so that Av;,1 - v, =0 Vk
(A-orthogonality instead of orthogonality!!)

r(Xitq1)

<€
bl

5 go back to 3, until

, in the choice of the

A-orthogonality

Let’s focus on the orthogonalization step, taking in mind the equation v;;1:=7(X;41) + 2t —o BikVi:
1 — FIRST ITERATION vq:=1{ + LoV A-orthogonality :

t
t t t VoAr,
VoAv, = 0 = vodry + B1oVoAve = 0= 10 = —
2 —SECOND ITERATION v2:=1‘2 + ,320170 + ,321171 A-Orthogonality:
t t t vf,Arz
VoAV, = 0 = VoAr; + 20004V + = 0= f30=—
t t t t viAr;
V1Av; = 0= v1Ar, + (001470 + 210141 = 05 By = —
note that we used here that and that , hence
Also,

3 — OTHER ITERATIONS:

- i :
Vi1 = Tig1 + Dk=o Bir Vi With

Conjugate Gradient Magic

Let’s make some observations:
e by constructionr;,; - v; = 0 (that’s how we choose «).
* Itiseasytoprovethat ri v, =0=>1r, - v;=0Vj<i

The last sentence can be paraphrased as follows:
Ti+1-L span{v,..v;}

* now, Vg =71(x11) + Xg—oBuVr hence vy q
. It follows that
span{v,...v;}=span{r,...r;}

But then

riz1-Lspan{v,..v;}=> 1 Lspan{ry.r;}=>r, ., -r;=0Vj <i

https://en.wikipedia.org/wiki/%E2%9F%82
https://en.wikipedia.org/wiki/%E2%9F%82
https://en.wikipedia.org/wiki/%E2%9F%82

Conjugate Gradient Magic

Now the CG magic, is that taking into account that ;- r;= 0 Vj < i we discover that

Proof: riy1 = b — Axi+1 =b— Ax,- — aAv,- =T; + aiAvi — aiAv,- =Tiy1 T

Hence t t t t t

VAT Ti 1AV . Tit1Tk+1 — Vit1Tk _ “Tis1Th+1

Btk = 3 =— VE<i - Bk = ; = 7

v, Avy v, Avy a; v Avy a; v Avy

Now k < i = rkr; = 0 it follows that the only non zero betais for k = i t
B _ TiyaTiv1 . “Tip1Tiv1 Tip1Tin
(i+1)i — t — ot t,.. t
a;v;Av; ViTriy1 — VT ;T

The last step is to observe that . X
l— l—
vi=1;+) BV >1iv;=rir;+) Buriv, =rir;
i i ikVk ivi i'i ik"iVk i'i
k=0 k=0

Which allows to conclude that .
riv1Ti+1

Viy1 =Ty + .
iri

... hence

CONJUGATE GRADIENT ALGORITHM

1l ro=b—-—Ax, > vyg =1y

t
__ yiri
Z. ai—

- X; = X: + A:V:;
vavi i+1 i ivi

3 ri_|_1. =7Tr; — aiAvi C.OU|d also do riv1 =T — Axi+1 but that would
require one more matrix-vector prOdUCt

t
_ Tit1Ti+1 .
’ 1+ | A t... 1+ _ 1+ 1+ | Al |
4 ﬁ(i . — V- 1 T 1 _|_ﬁ(1).v.
i

5. Go back to 2 and loop until convergence

Convergence Estimates

Considering the condition number k = k(A) = Am“x/,l

min

Convergence estimate of CG is:

Vi —1 i
le_i|| < 2<\/F+1 le_O||

Convergence estimate of Steepest Descent was:

| k—1\
le_tll <=7 lle0ll

What if the matrix is not symmetric?

CG can only be applied if the matrix is SPD, however for an arbitrary
matrix A (non SPD, and eventually not square) one may solve

AtAx = A'b

Variation of the CG algorithm exist in which A4 is never computed
explicitly (good, since A*A has more nonzeros than A)

PROBLEM: the condition number of k(AtA) = k(A)? hence the
convergence is much slower.

GMRES ALGORITHM

The most known work horse for solving non-SPD systems is the GMRES algorithm.
Although we will not go in detail, the iterate of the gmres is

Xis1 =X+ Vy V= (vlo 11‘)

Where y is chosen so to minimize
lro — AVYll2

The crucial difference with CG is that since A is not symmetric (nor positive definite)
we need to store all of the v;

The crucial issue, aside of the memory occupation, is how to effectively perform
the minimization of||ro — AVYy||,

NOTE: Implementing GMRES i way more technical
than CG. USE LIBRARIES!

Using Krylov methods as Matrix-Free

A very interesting property of laplacian methods is that the actual knowledge of the matrix
entries 4;; is not needed.

One only needs to evaluate the “action of a matrix onto a vector”, that is, how to compute
Av for any given vector v.

A practical example helps in understanding this better:

2 -1 0 X1 2X1 — Xy
A=|-1 2 —-1|] x=(X2]|->Ax=|—Xx1+2xy— X3

O -1 2 X3 —Xy + 2Xx3
For the CG it would be sufficient to know that the function
le — X9
f(X): =1 —X1 + sz — X3
—X + 2x3

Can be called whenever A@x is needed

TODOS:

Implement a CG for the laplacian problems

2. Inthe test implementation, verify that the expected orthogonality
conditions are met (use “large” laplacian matrices)

3. Implement a matrix free solution using scipy’s algorithm

Use the matrix-free approach to impose that the solution of a
Laplacian problem without dirichlet conditions is zero on average
in the domain.

References:

The bible of iterative methods:

https://www-users.cs.umn.edu/~saad/lterMethBook 2ndEd.pdf

An in depth dive into the CG

https://www.cs.cmu.edu/~guake-papers/painless-conjugate-
gradient.pdf

https://www-users.cs.umn.edu/%7Esaad/IterMethBook_2ndEd.pdf
https://www.cs.cmu.edu/%7Equake-papers/painless-conjugate-gradient.pdf

	Krylov Methods
	Real basics…
	Real basics…
	Real basics…
	Krylov Subspace
	Minimizing residual along a line
	Special Case of SPD matrices
	Steepest Descent �(not a member of the Krylov Family)
	Why it takes long?
	Why it takes long?
	Why it takes long?
	Conjugate Gradient
	A-orthogonality
	Conjugate Gradient Magic
	Conjugate Gradient Magic
	CONJUGATE GRADIENT ALGORITHM
	Convergence Estimates
	What if the matrix is not symmetric?
	GMRES ALGORITHM�
	Using Krylov methods as Matrix-Free�
	TODOS:
	References:

