Krylov Methods

A (very) incomplete introduction

Riccardo Rossi

Real basics...

Let's begin with a question: imagine that i have a given vector $r(x) \coloneqq b - Ax$

What does it mean to require r(x) = 0?

Real basics...

Let's begin with a question: imagine that i have a given vector (of size N) $r(x) \coloneqq b - Ax$

What does it mean to require r(x) = 0?

ANSWER – it means that all of its components are zero...

...something that we can write as

$$r(x) \cdot e_i = 0 \quad \forall i$$

THAT IS: a vector is zero if it is ortogonal to all of the vectors of a basis of the space it lives in

Real basics...

But which basis? ANY!!

THAT IS: if $\{v_0 \dots v_N\}$ form a basis of R^N than a vector is zero if and only if $r(x) \cdot v_i = 0 \quad \forall i$

IN A NUTSHELL, Krylov methods are all about constructing a basis (that grows with the number of iterations until spanning the entire \mathbb{R}^N) and making the residual to be Orthogonal to such basis.

Krylov Subspace

Of course we have complete freedom of "incrementally constructing" a space that eventually describes the entire \mathbb{R}^N .

The space employed by Krylov techniques is known as "Krylov Subspace", defined as $K_i(A, b) = span\{b, Ab, A^2b, ..., A^ib\}$

Provided that the matrix A is invertible, and that b has a component wrt all of the eigenvectors of A, such space will eventually grow with the iterations until coinciding with R^n

Krylov techniques differe of the construction and properties of a basis of $K_i(A, b)$.

A property shared by all of the methods in the Krylov family is that **they will converge** (in exact algebra) **in at most N iterations** (although they will typically converge way before)

Minimizing residual along a line

A tool very frequently used, is the minimization of the residual along a given direction. Let's imagine that we have a starting solution x_0 and a search direction identified by a unit vector v

The idea is to choose a new $x \coloneqq x_0 + \alpha v$ such that $||r(x)||^2$ is minimal in a choosen norm. One way to accomplish this, is to make the residual to be ortogonal to the direction v, that is, to require that $v \cdot r(x) = 0$

Using the definition we get

$$0 = \mathbf{v} \cdot \mathbf{r}(\mathbf{x}) = \mathbf{v} \cdot (\mathbf{b} - \mathbf{A}\mathbf{x}_0 - \alpha \mathbf{A}\mathbf{v}) = \mathbf{v} \cdot (\mathbf{r}(\mathbf{x}_0) - \alpha \mathbf{A}\mathbf{v})$$

Solving for alpha

$$\alpha = \frac{v \cdot r(x_0)}{v \cdot Av}$$

Special Case of SPD matrices

If A is SPD, we can define a functional $\Psi(x) := x^t b - \frac{1}{2} x^t A x$ (which we will use both for CG and SD)

It is easy to see that:

- such that $Ax_{ex} = b$ is the (only) minimum of Ψ (easy to prove since **A** is SPD, hence $v^t Av > 0$ for any non zero **v**)
- The gradient of the function is $\nabla \Psi = b Ax = r(x)$ (obviously zero in $\nabla \Psi (x_{ex}) = 0$)

Steepest Descent

(not a member of the Krylov Family)

The "Steepest Descent" Is the first idea one may have. It Works as follows:

1 choose a starting point x_0 and use $\nabla \Psi$ as search direction

$$\boldsymbol{v} \coloneqq \frac{\nabla \Psi\left(\boldsymbol{x}_{0}\right)}{\|\nabla \Psi\left(\boldsymbol{x}_{0}\right)\|} = \frac{\boldsymbol{r}(\boldsymbol{x}_{0})}{\|\boldsymbol{r}(\boldsymbol{x}_{0})\|}$$

2 evaluate the minimum in the direction of v starting from x_0 , that is, compute $x_1 = x_0 + \alpha v$ (with $\alpha \coloneqq -\frac{v^t r(x_0)}{v^t A v}$, using the minimization formula in the previous slides)

3 repeat until
$$\frac{r(x_i)}{\|b\|} < \epsilon$$

SIMPLE but ... may be very slow (no guarantees it converges in k)

Why it takes long?

Plot of $\Psi(x) = x^t b - 1/2x^t Ax$

$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad k(A) = 2$$

Plot of
$$\Psi(x) = x^t b - 1/2x^t Ax$$

$$A = \begin{pmatrix} 11 & -9 \\ -9 & 11 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad k(A) = 10$$

Why it takes long?

Plot of $\Psi(x) = x^t b - 1/2x^t Ax$

$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad k(A) = 2$$

Plot of
$$\Psi(x) = x^t b - 1/2x^t Ax$$

$$A = \begin{pmatrix} 11 & -9 \\ -9 & 11 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad k(A) = 10$$

Why it takes long?

Plot of $\Psi(x) = x^t b - 1/2x^t Ax$

$$A = \begin{pmatrix} 3 & -1 \\ -1 & 3 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad k(A) = 2$$

Plot of
$$\Psi(x) = x^t b - 1/2x^t Ax$$

$$A = \begin{pmatrix} 11 & -9 \\ -9 & 11 \end{pmatrix} \quad b = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \quad k(A) = 10$$

Conjugate Gradient

The "Conjugate Gradient" method can be understood as an improvement over the "steepest descent". It Works as follows:

1 - choose a starting point x_0 and use $v_0 = r(x_0) = r_0$ as first search direction (as the steepest descent!)

$$2 x_i = x_0, v_i = v_0$$

$$3 - x_{i+1} = x_i + \alpha v_i$$
 (with $\alpha := -\frac{v_0^t r(x_0)}{v_0^t A v_0}$)

4 - choose a new update direction as v_{i+1} := $r(x_{i+1}) + \sum_{k=0}^{i} \beta_{ik} v_k$ where the β_{ik} are chosen so that $Av_{i+1} \cdot v_k = 0 \quad \forall k$ (A-orthogonality instead of orthogonality!!)

5 go back to 3, until
$$\frac{r(x_{i+1})}{\|\boldsymbol{b}\|} < \epsilon$$

The key difference wrt the steepest descent is in Step 4, in the choice of the

A-orthogonality

Let's focus on the orthogonalization step, taking in mind the equation v_{i+1} := $r(x_{i+1}) + \sum_{k=0}^{i} \beta_{ik} v_k$: 1 – FIRST ITERATION v_1 := $r_1 + \beta_{00} v_0$ A-orthogonality :

$$v_0^t A v_1 = 0 \Rightarrow v_0^t A r_1 + \beta_{10} v_0^t A v_0 = 0 \Rightarrow \beta_{10} = -\frac{v_0^t A r_1}{v_0^t A v_0}$$

2 – SECOND ITERATION v_2 := $r_2 + \beta_{20}v_0 + \beta_{21}v_1$ A-orthogonality:

$$v_0^t A v_2 = 0 \Rightarrow v_0^t A r_2 + \beta_{20} v_0^t A v_0 + \beta_{21} v_0 A v_1 = 0 \Rightarrow \beta_{20} = \frac{v_0^t A r_2}{v_0^t A v_0^t}$$

$$v_1^t A v_2 = 0 \Rightarrow v_1^t A r_2 + \beta_{20} v_1^t A v_0 + \beta_{21} v_1^t A v_1 = 0 \Rightarrow \beta_{21} = \frac{v_0^t A r_2}{v_1^t A v_1}$$

note that we used here that $v_0Av_1=0$ and that A is symmetric, hence $v_0Av_1=v_1Av_0=0$.

Also, the terms in the denominator are guaranteed to be positive since A is SPD

3 – OTHER ITERATIONS:

$$v_{i+1}\coloneqq r_{i+1}+\sum_{k=0}^i eta_{ik}v_k$$
 with $oldsymbol{eta}_{(i+1)k}=-rac{v_k^tAr_{i+1}}{v_k^tAv_k}\,orall k\leq i$

Conjugate Gradient Magic

Let's make some observations:

- by construction $\mathbf{r}_{i+1} \cdot \mathbf{v}_i = 0$ (that's how we choose α).
- It is easy to prove that $r_{i+1} \cdot v_i = 0 \Rightarrow r_{i+1} \cdot v_j = 0 \ \ \forall \ \mathsf{j} \leq i$
- The last sentence can be paraphrased as follows:

$$r_{i+1} \perp \operatorname{span}\{v_0 ... v_i\}$$

• now, $v_{i+1} = r(x_{i+1}) + \sum_{k=0}^{i} \beta_{ik} v_k$ hence v_{i+1} is a linear combination of the previous residuals(*). It follows that

$$span\{v_0...v_i\}=span\{r_0...r_i\}$$

But then

$$r_{i+1} \perp \operatorname{span}\{v_0 \dots v_i\} \Rightarrow r_{i+1} \perp \operatorname{span}\{r_0 \dots r_i\} \Rightarrow r_{i+1} \cdot r_j = 0 \ \forall j \leq i$$

$$span\{r_0...r_i\} = K_i(A, r_0)$$

Conjugate Gradient Magic

Now the CG magic, is that taking into account that $r_{i+1} \cdot r_i = 0 \ \forall j \leq i$ we discover that many of the β_* are actually 0 ... hence no need to store the search vectors.

Proof: $r_{i+1} = b - Ax_{i+1} = b - Ax_i - \alpha Av_i = r_i + \alpha_i Av_i \Rightarrow \alpha_i Av_i = r_{i+1} - r_i$

Hence

$$\beta_{(i+1)k} = -\frac{v_k^t A r_{i+1}}{v_k^t A v_k} = \frac{r_{i+1}^t A v_k}{v_k^t A v_k} \forall k \le i \qquad \rightarrow \qquad \beta_{(i+1)k} = \frac{r_{i+1}^t r_{k+1} - r_{i+1}^t r_k}{\alpha_i v_k^t A v_k} = \frac{-r_{i+1}^t r_{k+1}}{\alpha_i v_k^t A v_k}$$

Now
$$k < i \Rightarrow r_k^t r_i = \mathbf{0}$$
 it follows that the only non zero beta is for $k = i$
$$\boldsymbol{\beta}_{(i+1)i} = \frac{-r_{i+1}^t r_{i+1}}{\alpha_i v_i^t A v_i} = \frac{-r_{i+1}^t r_{i+1}}{v_i^t r_{i+1} - v_i^t r_i} = \frac{r_{i+1}^t r_{i+1}}{v_i^t r_i}$$

The last step is to observe that

$$v_i = r_i + \sum_{k=0}^{i-1} \beta_{ik} v_k \Rightarrow r_i^t v_i = r_i^t r_i + \sum_{k=0}^{i-1} \beta_{ik} r_i^t v_k = r_i^t r_i$$

Which allows to conclude that

$$eta_{(i+1)i} = rac{r_{i+1}^t r_{i+1}}{r_i^t r_i}
ightarrow v_{i+1} = r_{i+1} + rac{r_{i+1}^t r_{i+1}}{r_i^t r_i} v_i$$

CONJUGATE GRADIENT ALGORITHM

1.
$$r_0 = b - Ax_0 \rightarrow v_0 = r_0$$

2.
$$\alpha_i = \frac{v_i^t r_i}{v_i^t A v_i} \rightarrow x_{i+1} = x_i + \alpha_i v_i$$

3. $r_{i+1} = r_i - \alpha_i A v_i$ could also do $r_{i+1} = r_i - A x_{i+1}$ but that would require one more matrix-vector product

4.
$$\beta_{(i+1)i} = \frac{r_{i+1}^t r_{i+1}}{r_i^t r_i} \rightarrow v_{i+1} = r_{i+1} + \beta_{(i+1)i} v_i$$

5. Go back to 2 and loop until convergence

COST: 1 product Av_i + a few inner products. Guaranteed to converge in N iterations, but will most likely converge much before

Convergence Estimates

Considering the condition number $k = k(A) = \frac{\lambda_{max}}{\lambda_{min}}$

Convergence estimate of **CG** is:

$$||e_{i}|| < 2\left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^{l} ||e_{0}||$$

Convergence estimate of **Steepest Descent** was:

$$||e_{-i}|| < \left(\frac{k-1}{k+1}\right)^i ||e_{-0}||$$

What if the matrix is not symmetric?

CG can only be applied if the matrix is SPD, however for an arbitrary matrix A (non SPD, and eventually not square) one may solve $A^tAx = A^tb$

Variation of the CG algorithm exist in which A^tA is never computed explicitly (good, since A^tA has more nonzeros than A)

PROBLEM: the condition number of $k(A^tA) = k(A)^2$ hence the convergence is much slower.

GMRES ALGORITHM

The most known work horse for solving non-SPD systems is the GMRES algorithm. Although we will not go in detail, the iterate of the gmres is

$$x_{i+1} = x_0 + Vy$$
 $V := \begin{pmatrix} v_0 & \dots & v_i \\ \downarrow & & \downarrow \end{pmatrix}$

Where y is chosen so to minimize

$$||r_0 - AVy||_2$$

The crucial difference with CG is that since A is not symmetric (nor positive definite) we need to store all of the v_i

The crucial issue, aside of the memory occupation, is how to effectively perform the minimization of $||r_0 - AVy||_2$

NOTE: Implementing GMRES i way more technical than CG. USE LIBRARIES!

Using Krylov methods as Matrix-Free

A very interesting property of laplacian methods is that the actual knowledge of the matrix entries A_{ij} is not needed.

One only needs to evaluate the "action of a matrix onto a vector", that is, how to compute Av for any given vector v.

A practical example helps in understanding this better:

$$A := \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix} \quad x = \begin{pmatrix} x_1 \\ x_2 \\ x_3 \end{pmatrix} \rightarrow Ax = \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 \end{pmatrix}$$

For the CG it would be sufficient to know that the function

$$\mathbf{f}(\mathbf{x}) := \begin{pmatrix} 2x_1 - x_2 \\ -x_1 + 2x_2 - x_3 \\ -x_2 + 2x_3 \end{pmatrix}$$

Can be called whenever A@x is needed

TODOS:

- 1. Implement a CG for the laplacian problems
- 2. In the test implementation, verify that the expected orthogonality conditions are met (use "large" laplacian matrices)
- 3. Implement a matrix free solution using scipy's algorithm
- 4. Use the matrix-free approach to impose that the solution of a Laplacian problem without dirichlet conditions is zero on average in the domain.

References:

The bible of iterative methods:

https://www-users.cs.umn.edu/~saad/IterMethBook 2ndEd.pdf

An in depth dive into the CG

https://www.cs.cmu.edu/~quake-papers/painless-conjugate-gradient.pdf