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Real basics…

Let’s begin with a question: imagine that i have a given vector 
𝒓𝒓 𝒙𝒙 ≔ 𝒃𝒃 − 𝑨𝑨𝒙𝒙

What does it mean to require 𝒓𝒓 𝒙𝒙 = 𝟎𝟎 ?



Real basics…

Let’s begin with a question: imagine that i have a given vector (of size N)
𝒓𝒓 𝒙𝒙 ≔ 𝒃𝒃 − 𝑨𝑨𝒙𝒙

What does it mean to require 𝒓𝒓 𝒙𝒙 = 𝟎𝟎 ?

ANSWER  – it means that all of its components are zero…
…something that we can write as
𝒓𝒓 𝒙𝒙 ⋅ 𝒆𝒆𝑖𝑖 = 𝟎𝟎 ∀𝒊𝒊

THAT IS: a vector is zero if it is ortogonal to all of the vectors of a basis of 
the space it lives in  



Real basics…

But which basis? ANY !!

THAT IS: if 𝑣𝑣0 … 𝑣𝑣𝑁𝑁 form a basis of 𝑅𝑅𝑁𝑁 than a vector is zero if and only
if 𝒓𝒓 𝒙𝒙 ⋅ 𝒗𝒗𝑖𝑖 = 𝟎𝟎 ∀𝒊𝒊

IN A NUTSHELL, Krylov methods are all about constructing a basis (that
grows with the number of iterations until spanning the entire 𝑅𝑅𝑁𝑁) and 
making the residual to be Orthogonal to such basis.



Krylov Subspace

Of course we have complete freedom of “incrementally constructing” a space that
eventually describes the entire 𝑅𝑅𝑁𝑁.

The space employed by Krylov techniques is known as “Krylov Subspace”, defined as
𝐾𝐾𝑖𝑖 𝑨𝑨,𝒃𝒃 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠{b,𝑨𝑨b,𝑨𝑨𝟐𝟐𝒃𝒃… ,𝑨𝑨𝒊𝒊𝒃𝒃}

Provided that the matrix A is invertible, and that b has a component wrt all of the
eigenvectors of A, such space will eventually grow with the iterations until coinciding with
R^n

Krylov techniques differe of the construction and properties of a basis of 𝐾𝐾𝑖𝑖 𝐴𝐴, 𝑏𝑏 .
A property shared by all of the methods in the Krylov family is that they will converge (in 
exact algebra) in at most N iterations (although they will typically converge way before) 



Minimizing residual along a line

A tool very frequently used, is the minimization of the residual along a given
direction. Let’s imagine that we have a starting solution 𝒙𝒙0 and a search
direction identified by a unit vector 𝒗𝒗

The idea is to choose a new 𝒙𝒙 ≔ 𝒙𝒙𝟎𝟎 + 𝜶𝜶𝒗𝒗 such that 𝒓𝒓 𝒙𝒙 𝟐𝟐 is minimal in a 
choosen norm. One way to accomplish this, is to make the residual to be 
ortogonal to the direction 𝒗𝒗, that is, to require that 𝒗𝒗 ⋅ 𝒓𝒓 𝒙𝒙 = 𝟎𝟎
Using the definition we get

0 = 𝒗𝒗 ⋅ 𝒓𝒓 𝒙𝒙 = 𝒗𝒗 ⋅ 𝒃𝒃 − 𝑨𝑨𝒙𝒙𝟎𝟎 − 𝜶𝜶𝑨𝑨𝒗𝒗 = 𝒗𝒗 ⋅ 𝒓𝒓(𝒙𝒙𝟎𝟎) − 𝜶𝜶𝑨𝑨𝒗𝒗
Solving for alpha

𝜶𝜶 =
𝒗𝒗 ⋅ 𝒓𝒓 𝒙𝒙𝟎𝟎
𝒗𝒗 ⋅ 𝑨𝑨𝒗𝒗



Special Case of SPD matrices

If 𝑨𝑨 is SPD, we can define a functional 𝚿𝚿 𝒙𝒙 ≔ 𝒙𝒙𝒕𝒕𝒃𝒃 − 𝟏𝟏
𝟐𝟐𝒙𝒙

𝒕𝒕𝐴𝐴𝐴𝐴 (which we
will use both for CG and SD)
It is easy to see that:
1 such that 𝑨𝑨𝒙𝒙𝒆𝒆𝒙𝒙 = 𝒃𝒃 𝑖𝑖𝑠𝑠 𝑡𝑡𝑡𝑡𝑡 (𝑜𝑜𝑠𝑠𝑜𝑜𝑜𝑜) 𝑚𝑚𝑖𝑖𝑠𝑠𝑖𝑖𝑚𝑚𝑚𝑚𝑚𝑚 of 𝚿𝚿 (easy to prove

since A is SPD, hence 𝒗𝒗𝒕𝒕𝑨𝑨𝒗𝒗 > 0 for any non zero 𝐯𝐯)
2 The gradient of the function is 𝛁𝛁𝚿𝚿 = 𝒃𝒃 − 𝑨𝑨𝒙𝒙 = 𝒓𝒓(𝒙𝒙) (obviously

zero in 𝜵𝜵𝚿𝚿 𝒙𝒙𝑒𝑒𝑒𝑒 = 𝟎𝟎)



Steepest Descent
(not a member of the Krylov Family)

The “Steepest Descent” Is the first idea one may have. It Works as follows:

1 choose a starting point 𝒙𝒙𝟎𝟎 and use 𝛻𝛻𝛹𝛹 as search direction

𝒗𝒗 ≔ 𝛻𝛻𝛹𝛹 𝒙𝒙0
𝛻𝛻𝛹𝛹 𝒙𝒙0

=
𝒓𝒓(𝒙𝒙0)
𝒓𝒓(𝒙𝒙0)

2 evaluate the minimum in the direction of 𝒗𝒗 starting from 𝒙𝒙0, that is, compute       
𝒙𝒙𝟏𝟏 = 𝒙𝒙𝟎𝟎 + 𝜶𝜶 𝒗𝒗 (with 𝜶𝜶 ≔ −𝒗𝒗𝒕𝒕𝒓𝒓 𝒙𝒙0

𝒗𝒗𝒕𝒕𝑨𝑨𝒗𝒗
, using the minimization formula in the previous

slides)

3 repeat until 𝒓𝒓(𝒙𝒙𝑖𝑖)
𝒃𝒃

< 𝜖𝜖

SIMPLE but … may be very slow (no guarantees it converges in k)



Why it takes long?

Plot of  Ψ 𝐴𝐴 = 𝒙𝒙𝒕𝒕𝒃𝒃 − 1/2𝒙𝒙𝒕𝒕𝑨𝑨𝒙𝒙

𝐴𝐴 = 3 −1
−1 3 𝑏𝑏 = 1

2 𝑘𝑘 𝐴𝐴 = 2

Plot of  Ψ 𝐴𝐴 = 𝒙𝒙𝒕𝒕𝒃𝒃 − 1/2𝒙𝒙𝒕𝒕𝑨𝑨𝒙𝒙

𝐴𝐴 = 11 −9
−9 11 𝑏𝑏 = 1

2 𝑘𝑘 𝐴𝐴 = 10
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Conjugate Gradient

The “Conjugate Gradient” method can be understood as an improvement over the
“steepest descent”. It Works as follows:

1 - choose a starting point 𝒙𝒙𝟎𝟎 and use 𝒗𝒗𝟎𝟎 = 𝒓𝒓 𝒙𝒙𝟎𝟎 = 𝒓𝒓𝟎𝟎 as first search direction (as the
steepest descent!)
2  𝒙𝒙𝒊𝒊 = 𝒙𝒙𝟎𝟎,𝒗𝒗𝒊𝒊 = 𝒗𝒗𝟎𝟎
3 - 𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒊𝒊 + 𝜶𝜶 𝒗𝒗𝒊𝒊 (with 𝜶𝜶 ≔ −𝒗𝒗𝟎𝟎𝒕𝒕𝒓𝒓 𝒙𝒙0

𝒗𝒗𝟎𝟎𝒕𝒕𝑨𝑨𝒗𝒗𝟎𝟎
) 

4 - choose a new update direction as 𝒗𝒗𝒊𝒊+𝟏𝟏:=𝒓𝒓 𝒙𝒙𝒊𝒊+𝟏𝟏 + ∑𝑘𝑘=0𝑖𝑖 𝛽𝛽𝑖𝑖𝑘𝑘𝒗𝒗𝑘𝑘
where the 𝛽𝛽𝑖𝑖𝑘𝑘 are chosen so that 𝑨𝑨𝒗𝒗𝒊𝒊+𝟏𝟏 ⋅ 𝒗𝒗𝒌𝒌 = 𝟎𝟎 ∀𝒌𝒌
(A-orthogonality instead of orthogonality!!)

5 go back to 3, until 𝒓𝒓(𝒙𝒙𝑖𝑖+1)
𝒃𝒃

< 𝜖𝜖

The key difference wrt the steepest descent is in Step 4, in the choice of the



A-orthogonality

Let’s focus on the orthogonalization step, taking in mind the equation 𝒗𝒗𝒊𝒊+𝟏𝟏:=𝒓𝒓 𝒙𝒙𝒊𝒊+𝟏𝟏 + ∑𝑘𝑘=0𝑖𝑖 𝛽𝛽𝑖𝑖𝑘𝑘𝒗𝒗𝑘𝑘:
1 – FIRST ITERATION 𝒗𝒗𝟏𝟏:=𝒓𝒓1 + 𝛽𝛽00𝒗𝒗0 A-orthogonality :

𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒗𝒗𝟏𝟏 = 𝟎𝟎 ⇒ 𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒓𝒓𝟏𝟏 + 𝜷𝜷𝟏𝟏𝟎𝟎𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒗𝒗𝟎𝟎 = 𝟎𝟎 ⇒ 𝜷𝜷𝟏𝟏𝟎𝟎 = −
𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒓𝒓𝟏𝟏
𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒗𝒗𝟎𝟎

2 – SECOND ITERATION 𝒗𝒗𝟐𝟐:=𝒓𝒓2 + 𝛽𝛽20𝒗𝒗0 + 𝛽𝛽21𝒗𝒗1 A-orthogonality:

𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒗𝒗𝟐𝟐 = 𝟎𝟎 ⇒ 𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒓𝒓𝟐𝟐 + 𝜷𝜷𝟐𝟐𝟎𝟎𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒗𝒗𝟎𝟎 + 𝜷𝜷𝟐𝟐𝟏𝟏𝒗𝒗𝟎𝟎𝑨𝑨𝒗𝒗𝟏𝟏 = 𝟎𝟎 ⇒ 𝜷𝜷𝟐𝟐𝟎𝟎 = −
𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒓𝒓𝟐𝟐
𝒗𝒗𝟎𝟎𝒕𝒕 𝑨𝑨𝒗𝒗𝟎𝟎𝒕𝒕

𝒗𝒗𝟏𝟏𝒕𝒕 𝑨𝑨𝒗𝒗𝟐𝟐 = 𝟎𝟎 ⇒ 𝒗𝒗𝟏𝟏𝒕𝒕 𝑨𝑨𝒓𝒓𝟐𝟐 + 𝜷𝜷𝟐𝟐𝟎𝟎𝒗𝒗𝟏𝟏𝒕𝒕 𝑨𝑨𝒗𝒗𝟎𝟎 + 𝜷𝜷𝟐𝟐𝟏𝟏𝒗𝒗𝟏𝟏𝒕𝒕 𝑨𝑨𝒗𝒗𝟏𝟏 = 𝟎𝟎 ⇒ 𝜷𝜷𝟐𝟐𝟏𝟏 = −
𝒗𝒗𝟏𝟏𝒕𝒕 𝑨𝑨𝒓𝒓𝟐𝟐
𝒗𝒗𝟏𝟏𝒕𝒕 𝑨𝑨𝒗𝒗𝟏𝟏

note that we used here that 𝒗𝒗𝟎𝟎𝑨𝑨𝒗𝒗𝟏𝟏 = 𝟎𝟎 and that A is symmetric, hence 𝒗𝒗𝟎𝟎𝑨𝑨𝒗𝒗𝟏𝟏 = 𝒗𝒗𝟏𝟏𝑨𝑨𝒗𝒗𝟎𝟎 = 𝟎𝟎.
Also, the terms in the denominator are guaranteed to be positive since A is SPD

3 – OTHER ITERATIONS:

𝒗𝒗𝒊𝒊+𝟏𝟏 ≔ 𝒓𝒓𝒊𝒊+𝟏𝟏 + ∑𝑘𝑘=0𝑖𝑖 𝛽𝛽𝑖𝑖𝑘𝑘𝒗𝒗𝑘𝑘 with  𝜷𝜷(𝒊𝒊+𝟏𝟏)𝒌𝒌 = −𝒗𝒗𝒌𝒌
𝒕𝒕 𝑨𝑨𝒓𝒓𝒊𝒊+𝟏𝟏
𝒗𝒗𝒌𝒌
𝒕𝒕 𝑨𝑨𝒗𝒗𝒌𝒌

∀𝒌𝒌 ≤ 𝒊𝒊



Conjugate Gradient Magic

Let’s make some observations:
• by construction 𝒓𝒓𝑖𝑖+1 ⋅ 𝒗𝒗𝑖𝑖 = 0 (that’s how we choose 𝛼𝛼). 
• It is easy to prove that 𝒓𝒓𝑖𝑖+1 ⋅ 𝒗𝒗𝑖𝑖 = 0 ⇒ 𝒓𝒓𝑖𝑖+1 ⋅ 𝒗𝒗𝑗𝑗 = 0 ∀ j ≤ 𝑖𝑖
• The last sentence can be paraphrased as follows:

𝒓𝒓𝑖𝑖+1⟂ span{𝒗𝒗0...𝒗𝒗𝑖𝑖}
• now,    𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒓𝒓 𝒙𝒙𝒊𝒊+𝟏𝟏 + ∑𝑘𝑘=0𝑖𝑖 𝛽𝛽𝑖𝑖𝑘𝑘𝒗𝒗𝑘𝑘 hence 𝒗𝒗𝒊𝒊+𝟏𝟏 is a linear combination of the previous

residuals(*). It follows that
span{𝒗𝒗0...𝒗𝒗𝑖𝑖}=span{𝒓𝒓0...𝒓𝒓𝑖𝑖}

• But then
𝒓𝒓𝑖𝑖+1⟂ span{𝒗𝒗0...𝒗𝒗𝑖𝑖} => 𝒓𝒓𝑖𝑖+1⟂ span{𝒓𝒓0...𝒓𝒓𝑖𝑖} => 𝒓𝒓𝑖𝑖+1 ⋅ 𝒓𝒓𝑗𝑗= 0 ∀𝑗𝑗 ≤ 𝑖𝑖

*we could actually show that span{𝒓𝒓0...𝒓𝒓𝑖𝑖}=𝑲𝑲𝑖𝑖(𝑨𝑨, 𝒓𝒓𝟎𝟎)

https://en.wikipedia.org/wiki/%E2%9F%82
https://en.wikipedia.org/wiki/%E2%9F%82
https://en.wikipedia.org/wiki/%E2%9F%82


Conjugate Gradient Magic
Now the CG magic, is that taking into account that 𝒓𝒓𝑖𝑖+1⋅ 𝒓𝒓𝑗𝑗= 0 ∀𝑗𝑗 ≤ 𝑖𝑖 we discover that many of the 𝜷𝜷∗are actually 0 … hence no 
need to store the search vectors. 

Proof: 𝒓𝒓𝑖𝑖+1 = 𝒃𝒃 − 𝑨𝑨𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒃𝒃 − 𝑨𝑨𝒙𝒙𝒊𝒊 − 𝜶𝜶𝑨𝑨𝒗𝒗𝒊𝒊 = 𝒓𝒓𝒊𝒊 + 𝛼𝛼𝑖𝑖𝑨𝑨𝒗𝒗𝒊𝒊 ⇒ 𝛼𝛼𝑖𝑖𝑨𝑨𝒗𝒗𝒊𝒊 = 𝒓𝒓𝑖𝑖+1 − 𝒓𝒓𝒊𝒊
Hence

𝜷𝜷(𝒊𝒊+𝟏𝟏)𝒌𝒌 = −
𝒗𝒗𝒌𝒌𝒕𝒕 𝑨𝑨𝒓𝒓𝒊𝒊+𝟏𝟏
𝒗𝒗𝒌𝒌𝒕𝒕 𝑨𝑨𝒗𝒗𝒌𝒌

=
𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝑨𝑨𝒗𝒗𝒌𝒌
𝒗𝒗𝒌𝒌𝒕𝒕 𝑨𝑨𝒗𝒗𝒌𝒌

∀𝒌𝒌 ≤ 𝒊𝒊 → 𝜷𝜷(𝒊𝒊+𝟏𝟏)𝒌𝒌 =
𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝑘𝑘+1 − 𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝒌𝒌

𝜶𝜶𝒊𝒊𝒗𝒗𝒌𝒌𝒕𝒕 𝑨𝑨𝒗𝒗𝒌𝒌
=
−𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝒌𝒌+𝟏𝟏
𝜶𝜶𝒊𝒊𝒗𝒗𝒌𝒌𝒕𝒕 𝑨𝑨𝒗𝒗𝒌𝒌

Now 𝑘𝑘 < 𝑖𝑖 ⇒ 𝒓𝒓𝒌𝒌𝒕𝒕 𝒓𝒓𝒊𝒊 = 𝟎𝟎 it follows that the only non zero beta is for 𝑘𝑘 = 𝑖𝑖

𝜷𝜷 𝒊𝒊+𝟏𝟏 𝒊𝒊 =
−𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝒊𝒊+𝟏𝟏
𝜶𝜶𝒊𝒊𝒗𝒗𝒊𝒊𝒕𝒕𝑨𝑨𝒗𝒗𝒊𝒊

=
−𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝒊𝒊+𝟏𝟏

𝒗𝒗𝒊𝒊𝒕𝒕𝒓𝒓𝑖𝑖+1 − 𝒗𝒗𝒊𝒊𝒕𝒕𝒓𝒓𝒊𝒊
=
𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝒊𝒊+𝟏𝟏
𝒗𝒗𝒊𝒊𝒕𝒕𝒓𝒓𝒊𝒊

The last step is to observe that

𝑣𝑣𝑖𝑖 = 𝑟𝑟𝑖𝑖 + �
𝑘𝑘=0

𝑖𝑖−1

𝛽𝛽𝑖𝑖𝑘𝑘𝑣𝑣𝑘𝑘 ⇒ 𝒓𝒓𝒊𝒊𝒕𝒕𝒗𝒗𝒊𝒊 = 𝒓𝒓𝒊𝒊𝒕𝒕𝒓𝒓𝒊𝒊 + �
𝒌𝒌=𝟎𝟎

𝒊𝒊−𝟏𝟏

𝜷𝜷𝒊𝒊𝒌𝒌𝒓𝒓𝒊𝒊𝒕𝒕𝒗𝒗𝒌𝒌 = 𝒓𝒓𝒊𝒊𝒕𝒕𝒓𝒓𝒊𝒊

Which allows to conclude that

𝜷𝜷 𝒊𝒊+𝟏𝟏 𝒊𝒊 =
𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝒊𝒊+𝟏𝟏
𝒓𝒓𝒊𝒊𝒕𝒕𝒓𝒓𝒊𝒊

→ 𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊+𝟏𝟏 +
𝒓𝒓𝒊𝒊+𝟏𝟏𝒕𝒕 𝒓𝒓𝒊𝒊+𝟏𝟏
𝒓𝒓𝒊𝒊𝒕𝒕𝒓𝒓𝒊𝒊

𝒗𝒗𝒊𝒊



CONJUGATE GRADIENT ALGORITHM

1. 𝒓𝒓𝟎𝟎 = 𝒃𝒃 − 𝑨𝑨𝒙𝒙𝒐𝒐 → 𝒗𝒗𝟎𝟎 = 𝒓𝒓𝟎𝟎
2. 𝜶𝜶𝒊𝒊 = 𝒗𝒗𝒊𝒊

𝒕𝒕𝒓𝒓𝒊𝒊
𝒗𝒗𝒊𝒊
𝒕𝒕𝑨𝑨𝒗𝒗𝒊𝒊

→ 𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝒊𝒊 + 𝜶𝜶𝒊𝒊𝒗𝒗𝒊𝒊
3. 𝒓𝒓𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊 − 𝜶𝜶𝒊𝒊𝑨𝑨𝒗𝒗𝒊𝒊 could also do  𝒓𝒓𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊 − 𝑨𝑨𝒙𝒙𝒊𝒊+𝟏𝟏 but that would 

require one more matrix-vector product

4. 𝜷𝜷 𝒊𝒊+𝟏𝟏 𝒊𝒊 = 𝒓𝒓𝒊𝒊+𝟏𝟏
𝒕𝒕 𝒓𝒓𝒊𝒊+𝟏𝟏
𝒓𝒓𝒊𝒊
𝒕𝒕𝒓𝒓𝒊𝒊

→ 𝒗𝒗𝒊𝒊+𝟏𝟏 = 𝒓𝒓𝒊𝒊+𝟏𝟏 + 𝜷𝜷 𝒊𝒊+𝟏𝟏 𝒊𝒊𝒗𝒗𝒊𝒊
5. Go back to 2 and loop until convergence

COST: 1 product 𝑨𝑨𝒗𝒗𝒊𝒊 + a few inner products. Guaranteed to converge in N 
iterations, but will most likely converge much before



Convergence Estimates

Considering the condition number 𝑘𝑘 = 𝑘𝑘 𝐴𝐴 = �𝜆𝜆𝑚𝑚𝑚𝑚𝑚𝑚
𝜆𝜆𝑚𝑚𝑖𝑖𝑚𝑚

Convergence estimate of CG is: 

𝑡𝑡_𝑖𝑖 < 2
𝑘𝑘 − 1
𝑘𝑘 + 1

𝑖𝑖

𝑡𝑡_0

Convergence estimate of Steepest Descent was: 

𝑡𝑡_𝑖𝑖 <
𝑘𝑘 − 1
𝑘𝑘 + 1

𝑖𝑖

𝑡𝑡_0



What if the matrix is not symmetric?

CG can only be applied if the matrix is SPD, however for an arbitrary
matrix 𝑨𝑨 (non SPD, and eventually not square) one may solve

𝑨𝑨𝒕𝒕𝑨𝑨𝒙𝒙 = 𝑨𝑨𝒕𝒕𝒃𝒃

Variation of the CG algorithm exist in which 𝑨𝑨𝒕𝒕𝑨𝑨 is never computed
explicitly (good, since 𝑨𝑨𝒕𝒕𝑨𝑨 has more nonzeros than 𝑨𝑨)

PROBLEM: the condition number of 𝒌𝒌(𝑨𝑨𝒕𝒕𝑨𝑨) = 𝒌𝒌 𝑨𝑨 𝟐𝟐 hence the
convergence is much slower.



GMRES ALGORITHM

The most known work horse for solving non-SPD systems is the GMRES algorithm.
Although we will not go in detail, the iterate of the gmres is

𝒙𝒙𝒊𝒊+𝟏𝟏 = 𝒙𝒙𝟎𝟎 + 𝑽𝑽𝑽𝑽 𝑽𝑽 ≔
𝒗𝒗𝟎𝟎 … 𝒗𝒗𝒊𝒊
↓ ↓

Where 𝑽𝑽 is chosen so to minimize
𝒓𝒓𝟎𝟎 − 𝑨𝑨𝑽𝑽𝑽𝑽 𝟐𝟐

The crucial difference with CG is that since A is not symmetric (nor positive definite) 
we need to store all of the 𝒗𝒗𝒊𝒊
The crucial issue, aside of the memory occupation, is how to effectively perform
the minimization of 𝒓𝒓𝟎𝟎 − 𝑨𝑨𝑽𝑽𝑽𝑽 𝟐𝟐

NOTE: Implementing GMRES i way more technical
than CG. USE LIBRARIES!



Using Krylov methods as Matrix-Free

A very interesting property of laplacian methods is that the actual knowledge of the matrix 
entries 𝑨𝑨𝑖𝑖𝑗𝑗 is not needed.
One only needs to evaluate the “action of a matrix onto a vector”, that is, how to compute 
𝑨𝑨𝒗𝒗 for any given vector 𝒗𝒗.
A practical example helps in understanding this better:

𝑨𝑨 ≔
𝟐𝟐 −𝟏𝟏 𝟎𝟎
−𝟏𝟏 𝟐𝟐 −𝟏𝟏
𝟎𝟎 −𝟏𝟏 𝟐𝟐

𝒙𝒙 =
𝒙𝒙𝟏𝟏
𝒙𝒙𝟐𝟐
𝒙𝒙𝟑𝟑

→ 𝐀𝐀𝐀𝐀 =
𝟐𝟐𝒙𝒙𝟏𝟏 − 𝒙𝒙𝟐𝟐

−𝒙𝒙𝟏𝟏 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝒙𝒙𝟑𝟑
−𝒙𝒙𝟐𝟐 + 𝟐𝟐𝒙𝒙𝟑𝟑

For the CG it would be sufficient to know that the function

𝐟𝐟 𝐀𝐀 : =
𝟐𝟐𝒙𝒙𝟏𝟏 − 𝒙𝒙𝟐𝟐

−𝒙𝒙𝟏𝟏 + 𝟐𝟐𝒙𝒙𝟐𝟐 − 𝒙𝒙𝟑𝟑
−𝒙𝒙𝟐𝟐 + 𝟐𝟐𝒙𝒙𝟑𝟑

Can be called whenever A@x is needed



TODOS:

1. Implement a CG for the laplacian problems
2. In the test implementation, verify that the expected orthogonality

conditions are met (use “large” laplacian matrices)
3. Implement a matrix free solution using scipy’s algorithm
4. Use the matrix-free approach to impose that the solution of a 

Laplacian problem without dirichlet conditions is zero on average
in the domain.



References:

The bible of iterative methods:
https://www-users.cs.umn.edu/~saad/IterMethBook_2ndEd.pdf

An in depth dive into the CG
https://www.cs.cmu.edu/~quake-papers/painless-conjugate-
gradient.pdf

https://www-users.cs.umn.edu/%7Esaad/IterMethBook_2ndEd.pdf
https://www.cs.cmu.edu/%7Equake-papers/painless-conjugate-gradient.pdf
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