Krylov Methods

A (very) incomplete introduction

Riccardo Rossi

Real basics...

Let's begin with a question: imagine that i have a given vector

$$
r(x):=b-A x
$$

What does it mean to require $r(x)=0$?

Real basics...

Let's begin with a question: imagine that i have a given vector (of size N)

$$
r(x):=b-A x
$$

What does it mean to require $r(x)=0$?

ANSWER - it means that all of its components are zero...
...something that we can write as

$$
\boldsymbol{r}(\boldsymbol{x}) \cdot \boldsymbol{e}_{i}=\mathbf{0} \forall i
$$

THAT IS: a vector is zero if it is ortogonal to all of the vectors of a basis of the space it lives in

Real basics...

But which basis? ANY !!

THAT IS: if $\left\{v_{0} \ldots v_{N}\right\}$ form a basis of R^{N} than a vector is zero if and only if $\boldsymbol{r}(\boldsymbol{x}) \cdot \boldsymbol{v}_{i}=\mathbf{0} \quad \forall \boldsymbol{i}$

IN A NUTSHELL, Krylov methods are all about constructing a basis (that grows with the number of iterations until spanning the entire R^{N}) and making the residual to be Orthogonal to such basis.

Krylov Subspace

Of course we have complete freedom of "incrementally constructing" a space that eventually describes the entire R^{N}.

The space employed by Krylov techniques is known as "Krylov Subspace", defined as

$$
K_{i}(\boldsymbol{A}, \boldsymbol{b})=\operatorname{span}\left\{\boldsymbol{b}, \boldsymbol{A} \boldsymbol{b}, \boldsymbol{A}^{\mathbf{2}} \boldsymbol{b} \ldots, \boldsymbol{A}^{i} \boldsymbol{b}\right\}
$$

Provided that the matrix A is invertible, and that b has a component wrt all of the eigenvectors of A, such space will eventually grow with the iterations until coinciding with $\mathrm{R}^{\wedge} \mathrm{n}$

Krylov techniques differe of the construction and properties of a basis of $K_{i}(A, b)$.
A property shared by all of the methods in the Krylov family is that they will converge (in exact algebra) in at most \mathbf{N} iterations (although they will typically converge way before)

Minimizing residual along a line

A tool very frequently used, is the minimization of the residual along a given direction. Let's imagine that we have a starting solution \boldsymbol{x}_{0} and a search direction identified by a unit vector \boldsymbol{v}

The idea is to choose a new $\boldsymbol{x}:=x_{0}+\alpha v$ such that $\|\boldsymbol{r}(\boldsymbol{x})\|^{2}$ is minimal in a choosen norm. One way to accomplish this, is to make the residual to be ortogonal to the direction \boldsymbol{v}, that is, to require that $\boldsymbol{v} \cdot \boldsymbol{r}(\boldsymbol{x})=\mathbf{0}$ Using the definition we get

$$
0=v \cdot r(x)=v \cdot\left(b-A x_{0}-\alpha A v\right)=v \cdot\left(r\left(x_{0}\right)-\alpha A v\right)
$$

Solving for alpha

$$
\alpha=\frac{v \cdot r\left(x_{\mathbf{0}}\right)}{v \cdot A v}
$$

Special Case of SPD matrices

If \boldsymbol{A} is SPD, we can define a functional $\boldsymbol{\Psi}(\boldsymbol{x}):=\boldsymbol{x}^{\boldsymbol{t}} \boldsymbol{b}-\frac{1}{2} \boldsymbol{x}^{t} A x$ (which we will use both for CG and SD)
It is easy to see that:
1 such that $\boldsymbol{A} \boldsymbol{x}_{\boldsymbol{e x}}=\boldsymbol{b}$ is the (only) minimum of $\boldsymbol{\Psi}$ (easy to prove since A is SPD, hence $\boldsymbol{v}^{\boldsymbol{t}} \boldsymbol{A} \boldsymbol{v}>0$ for any non zero \mathbf{v})
2 The gradient of the function is $\boldsymbol{\nabla} \boldsymbol{\Psi}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}=\boldsymbol{r}(\boldsymbol{x})$ (obviously zero in $\left.\boldsymbol{\nabla} \boldsymbol{\Psi}\left(\boldsymbol{x}_{e x}\right)=\mathbf{0}\right)$

Steepest Descent

(not a member of the Krylov Family)
The "Steepest Descent" Is the first idea one may have. It Works as follows:

1 choose a starting point x_{0} and use $\nabla \Psi$ as search direction

$$
v:=\frac{\nabla \Psi\left(x_{0}\right)}{\left\|\nabla \Psi\left(x_{0}\right)\right\|}=\frac{r\left(x_{0}\right)}{\left\|\boldsymbol{r}\left(\boldsymbol{x}_{0}\right)\right\|}
$$

2 evaluate the minimum in the direction of v starting from x_{0}, that is, compute $x_{1}=x_{0}+\alpha \boldsymbol{v}$ (with $\alpha:=-\frac{v^{t} r\left(x_{0}\right)}{v^{t} \boldsymbol{A} v}$, using the minimization formula in the previous slides)

3 repeat until $\frac{r\left(x_{i}\right)}{\|b\|}<\epsilon$
SIMPLE but ... may be very slow (no guarantees it converges in k)

Why it takes long?

Plot of $\Psi(x)=\boldsymbol{x}^{t} \boldsymbol{b}-1 / 2 \boldsymbol{x}^{t} \boldsymbol{A} \boldsymbol{x}$

$$
A=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right) \quad b=\binom{1}{2} \quad k(A)=2
$$

Plot of $\Psi(x)=\boldsymbol{x}^{t} \boldsymbol{b}-1 / 2 \boldsymbol{x}^{t} \boldsymbol{A} \boldsymbol{x}$
$A=\left(\begin{array}{cc}11 & -9 \\ -9 & 11\end{array}\right) \quad b=\binom{1}{2} \quad k(A)=10$

Why it takes long?

Plot of $\Psi(x)=\boldsymbol{x}^{t} \boldsymbol{b}-1 / 2 \boldsymbol{x}^{t} \boldsymbol{A} \boldsymbol{x}$

$$
A=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right) \quad b=\binom{1}{2} \quad k(A)=2
$$

Plot of $\Psi(x)=\boldsymbol{x}^{t} \boldsymbol{b}-1 / 2 \boldsymbol{x}^{t} \boldsymbol{A} \boldsymbol{x}$
$A=\left(\begin{array}{cc}11 & -9 \\ -9 & 11\end{array}\right) \quad b=\binom{1}{2} \quad k(A)=10$

Why it takes long?

Plot of $\Psi(x)=\boldsymbol{x}^{t} \boldsymbol{b}-1 / 2 \boldsymbol{x}^{t} \boldsymbol{A} \boldsymbol{x}$

$$
A=\left(\begin{array}{cc}
3 & -1 \\
-1 & 3
\end{array}\right) \quad b=\binom{1}{2} \quad k(A)=2
$$

Plot of $\Psi(x)=\boldsymbol{x}^{t} \boldsymbol{b}-1 / 2 \boldsymbol{x}^{t} \boldsymbol{A} \boldsymbol{x}$
$A=\left(\begin{array}{cc}11 & -9 \\ -9 & 11\end{array}\right) \quad b=\binom{1}{2} \quad k(A)=10$

Conjugate Gradient

The "Conjugate Gradient" method can be understood as an improvement over the "steepest descent". It Works as follows:

1 - choose a starting point $\boldsymbol{x}_{\mathbf{0}}$ and use $\boldsymbol{v}_{\mathbf{0}}=\boldsymbol{r}\left(\boldsymbol{x}_{\mathbf{0}}\right)=\boldsymbol{r}_{\mathbf{0}}$ as first search direction (as the steepest descent!)
$2 x_{i}=x_{0}, v_{i}=v_{0}$
3- $x_{i+1}=x_{i}+\alpha v_{i}$ (with $\left.\alpha:=-\frac{v_{0}{ }^{t} r\left(x_{0}\right)}{v_{0}{ }^{t} A v_{0}}\right)$
4 - choose a new update direction as $\boldsymbol{v}_{\boldsymbol{i + 1}}:=\boldsymbol{r}\left(\boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}}\right)+\sum_{k=0}^{i} \beta_{i k} \boldsymbol{v}_{k}$ where the $\beta_{i k}$ are chosen so that $\boldsymbol{A} \boldsymbol{v}_{\boldsymbol{i + 1}} \cdot \boldsymbol{v}_{\boldsymbol{k}}=\mathbf{0} \quad \forall \boldsymbol{k}$ (A-orthogonality instead of orthogonality!!)

5 go back to 3 , until $\frac{\boldsymbol{r}\left(\boldsymbol{x}_{i+1}\right)}{\|\boldsymbol{b}\|}<\epsilon$
The key difference wrt the steepest descent is in Step 4, in the choice of the

A-orthogonality

Let's focus on the orthogonalization step, taking in mind the equation $\boldsymbol{v}_{\boldsymbol{i + 1}}:=\boldsymbol{r}\left(\boldsymbol{x}_{\boldsymbol{i}+\mathbf{1}}\right)+\sum_{k=0}^{i} \beta_{i k} \boldsymbol{v}_{k}$: 1 - FIRST ITERATION $\boldsymbol{v}_{\mathbf{1}}:=\boldsymbol{r}_{1}+\beta_{00} \boldsymbol{v}_{0}$ A-orthogonality:

$$
v_{0}^{t} A v_{1}=0 \Rightarrow v_{0}^{t} A r_{1}+\beta_{10} v_{0}^{t} A v_{0}=0 \Rightarrow \beta_{10}=-\frac{v_{0}^{t} A r_{1}}{v_{0}^{t} A v_{0}}
$$

2 - SECOND ITERATION $\boldsymbol{v}_{2}:=\boldsymbol{r}_{2}+\beta_{20} \boldsymbol{v}_{0}+\beta_{21} \boldsymbol{v}_{1}$ A-orthogonality:

$$
\begin{aligned}
& v_{0}^{t} A v_{2}=0 \Rightarrow v_{0}^{t} A r_{2}+\beta_{20} v_{0}^{t} A v_{0}+\beta_{21} v_{0} A v_{1}=0 \Rightarrow \boldsymbol{\beta}_{20}=-\frac{v_{0}^{t} A r_{2}}{v_{0}^{t} A v_{0}^{t}} \\
& \boldsymbol{v}_{1}^{t} A v_{2}=\mathbf{0} \Rightarrow v_{1}^{t} A r_{2}+\beta_{20} v_{1}^{t} A v_{0}+\beta_{21} v_{1}^{t} A v_{1}=\mathbf{0} \Rightarrow \boldsymbol{\beta}_{21}=-\frac{v_{1}^{t} A r_{2}}{v_{1}^{t} A v_{1}}
\end{aligned}
$$

note that we used here that $v_{0} A v_{1}=0$ and that A is symmetric, hence $v_{0} A v_{1}=v_{1} A v_{0}=0$.
Also, the terms in the denominator are guaranteed to be positive since A is SPD
3 - OTHER ITERATIONS:

$$
\boldsymbol{v}_{\boldsymbol{i + 1}}:=\boldsymbol{r}_{\boldsymbol{i + 1}}+\sum_{k=0}^{i} \beta_{i k} \boldsymbol{v}_{k} \text { with } \boldsymbol{\beta}_{(i+1) k}=-\frac{v_{k}^{t} A r_{i+1}}{v_{k}^{t} A v_{k}} \forall k \leq \boldsymbol{i}
$$

Conjugate Gradient Magic

Let's make some observations:

- by construction $\boldsymbol{r}_{i+1} \cdot \boldsymbol{v}_{i}=0$ (that's how we choose α).
- It is easy to prove that $\boldsymbol{r}_{i+1} \cdot \boldsymbol{v}_{i}=0 \Rightarrow \boldsymbol{r}_{i+1} \cdot \boldsymbol{v}_{j}=0 \forall \mathrm{j} \leq i$
- The last sentence can be paraphrased as follows:

$$
r_{i+1} \perp \operatorname{span}\left\{v_{0} \ldots v_{i}\right\}
$$

- now, $\boldsymbol{v}_{\boldsymbol{i}+\boldsymbol{1}}=\boldsymbol{r}\left(\boldsymbol{x}_{\boldsymbol{i}+\mathbf{1}}\right)+\sum_{k=0}^{i} \beta_{i k} \boldsymbol{v}_{k}$ hence $\boldsymbol{v}_{\boldsymbol{i + 1}}$ is a linear combination of the previous residuals(*). It follows that $\quad \operatorname{span}\left\{\boldsymbol{v}_{0} \ldots v_{i}\right\}=\operatorname{span}\left\{r_{0} \ldots r_{i}\right\}$
- But then

$$
\boldsymbol{r}_{i+1} \perp \operatorname{span}\left\{\boldsymbol{v}_{0} \ldots \boldsymbol{v}_{i}\right\} \Rightarrow \boldsymbol{r}_{i+1} \perp \operatorname{span}\left\{\boldsymbol{r}_{0} \ldots \boldsymbol{r}_{i}\right\} \Rightarrow \boldsymbol{r}_{i+1} \cdot \boldsymbol{r}_{j}=0 \forall j \leq i
$$

*we could actually show that

Conjugate Gradient Magic

Now the CG magic, is that taking into account that $\boldsymbol{r}_{i+1} \cdot \boldsymbol{r}_{j}=0 \forall j \leq i$ we discover that many of the $\boldsymbol{\beta}_{*}$ are actually 0 ... hence no need to store the search vectors.

Proof: $\boldsymbol{r}_{i+1}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{\boldsymbol{i}+\boldsymbol{1}}=\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}_{\boldsymbol{i}}-\boldsymbol{\alpha} \boldsymbol{A} \boldsymbol{v}_{\boldsymbol{i}}=\boldsymbol{r}_{\boldsymbol{i}}+\alpha_{i} \boldsymbol{A} \boldsymbol{v}_{\boldsymbol{i}} \Rightarrow \alpha_{i} \boldsymbol{A} \boldsymbol{v}_{\boldsymbol{i}}=\boldsymbol{r}_{i+1}-\boldsymbol{r}_{\boldsymbol{i}}$
Hence

$$
\beta_{(i+1) k}=-\frac{v_{k}^{t} A r_{i+1}}{v_{k}^{t} A v_{k}}=\frac{r_{i+1}^{t} A v_{k}}{v_{k}^{t} A v_{k}} \forall k \leq i \quad \rightarrow \quad \beta_{(i+1) k}=\frac{r_{i+1}^{t} r_{k+1}-r_{i+1}^{t} r_{k}}{\alpha_{i} v_{k}^{t} A v_{k}}=\frac{-r_{i+1}^{t} r_{k+1}}{\alpha_{i} v_{k}^{t} A v_{k}}
$$

Now $k<i \Rightarrow \boldsymbol{r}_{\boldsymbol{k}}^{t} \boldsymbol{r}_{\boldsymbol{i}}=\mathbf{0}$ it follows that the only non zero beta is for $k=i$

$$
\beta_{(i+1) i}=\frac{-r_{i+1}^{t} r_{i+1}}{\alpha_{i} v_{i}^{t} A v_{i}}=\frac{-r_{i+1}^{t} r_{i+1}}{v_{i}^{t} r_{i+1}-v_{i}^{t} r_{i}}=\frac{r_{i+1}^{t} r_{i+1}}{v_{i}^{t} r_{i}}
$$

The last step is to observe that

$$
v_{i}=r_{i}+\sum_{k=0}^{i-1} \beta_{i k} v_{k} \Rightarrow \boldsymbol{r}_{\boldsymbol{i}}^{t} \boldsymbol{v}_{\boldsymbol{i}}=\boldsymbol{r}_{\boldsymbol{i}}^{t} \boldsymbol{r}_{\boldsymbol{i}}+\sum_{\boldsymbol{k}=\mathbf{0}}^{\boldsymbol{i}-\mathbf{1}} \boldsymbol{\beta}_{\boldsymbol{i} \boldsymbol{k}} \boldsymbol{r}_{\boldsymbol{i}}^{t} \boldsymbol{v}_{\boldsymbol{k}}=\boldsymbol{r}_{\boldsymbol{i}}^{t} \boldsymbol{r}_{\boldsymbol{i}}
$$

Which allows to conclude that

$$
\beta_{(i+1) i}=\frac{r_{i+1}^{t} r_{i+1}}{r_{i}^{t} r_{i}} \rightarrow v_{i+1}=r_{i+1}+\frac{r_{i+1}^{t} \boldsymbol{r}_{i+1}}{r_{i}^{t} r_{i}} v_{i}
$$

CONJUGATE GRADIENT ALGORITHM

1. $r_{0}=b-A x_{o} \rightarrow v_{0}=r_{0}$
2. $\alpha_{i}=\frac{v_{i}^{t} r_{i}}{v_{i}^{t} v_{i}} \rightarrow x_{i+1}=x_{i}+\alpha_{i} v_{i}$
3. $r_{i+1}=r_{i}-\alpha_{i} A v_{i}$ could also do $r_{i+1}=r_{i}-A x_{i+1}$ but that would require one more matrix-vector product
4. $\boldsymbol{\beta}_{(i+1) i}=\frac{r_{i+1}^{t} r_{i+1}}{r_{i}^{t_{i}} r_{i}} \rightarrow \boldsymbol{v}_{\boldsymbol{i + 1}}=\boldsymbol{r}_{\boldsymbol{i + 1}}+\boldsymbol{\beta}_{(i+1) i} \boldsymbol{v}_{\boldsymbol{i}}$
5. Go back to 2 and loop until convergence

COST: 1 product $\boldsymbol{A} \boldsymbol{v}_{\boldsymbol{i}}+$ a few inner products. Guaranteed to converge in N iterations, but will most likely converge much before

Convergence Estimates

Considering the condition number $k=k(A)={ }^{\lambda_{\max }} / \lambda_{\text {min }}$

Convergence estimate of CG is:

$$
\left\|e_{-} i\right\|<2\left(\frac{\sqrt{k}-1}{\sqrt{k}+1}\right)^{i}\left\|e_{-} 0\right\|
$$

Convergence estimate of Steepest Descent was:

$$
\left\|e_{-} i\right\|<\left(\frac{k-1}{k+1}\right)^{i}\left\|e_{-} 0\right\|
$$

What if the matrix is not symmetric?

CG can only be applied if the matrix is SPD, however for an arbitrary matrix \boldsymbol{A} (non SPD, and eventually not square) one may solve

$$
A^{t} A x=A^{t} b
$$

Variation of the CG algorithm exist in which $\boldsymbol{A}^{\boldsymbol{t}} \boldsymbol{A}$ is never computed explicitly (good, since $\boldsymbol{A}^{\boldsymbol{t}} \boldsymbol{A}$ has more nonzeros than \boldsymbol{A})

PROBLEM: the condition number of $\boldsymbol{k}\left(\boldsymbol{A}^{t} \boldsymbol{A}\right)=\boldsymbol{k}(\boldsymbol{A})^{2}$ hence the convergence is much slower.

GMRES ALGORITHM

The most known work horse for solving non-SPD systems is the GMRES algorithm. Although we will not go in detail, the iterate of the gmres is

$$
x_{i+1}=x_{0}+V y \quad V:=\left(\begin{array}{ccc}
v_{0} & \cdots & v_{i} \\
\downarrow & & \downarrow
\end{array}\right)
$$

Where \boldsymbol{y} is chosen so to minimize

$$
\left\|r_{0}-A V y\right\|_{2}
$$

The crucial difference with CG is that since A is not symmetric (nor positive definite) we need to store all of the v_{i}
The crucial issue, aside of the memory occupation, is how to effectively perform the minimization of $\left\|r_{0}-A V y\right\|_{2}$

NOTE: Implementing GMRES i way more technical than CG. USE LIBRARIES!

Using Krylov methods as Matrix-Free

A very interesting property of laplacian methods is that the actual knowledge of the matrix entries $\boldsymbol{A}_{i j}$ is not needed.
One only needs to evaluate the "action of a matrix onto a vector", that is, how to compute $\boldsymbol{A} \boldsymbol{v}$ for any given vector \boldsymbol{v}.
A practical example helps in understanding this better:

$$
A:=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right) \quad x=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) \rightarrow \mathrm{Ax}=\left(\begin{array}{c}
2 x_{1}-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}
\end{array}\right)
$$

For the CG it would be sufficient to know that the function

$$
\mathbf{f}(\mathrm{x}):=\left(\begin{array}{c}
2 x_{1}-x_{2} \\
-x_{1}+2 x_{2}-x_{3} \\
-x_{2}+2 x_{3}
\end{array}\right)
$$

Can be called whenever A@x is needed

TODOS:

1. Implement a CG for the laplacian problems
2. In the test implementation, verify that the expected orthogonality conditions are met (use "large" laplacian matrices)
3. Implement a matrix free solution using scipy's algorithm
4. Use the matrix-free approach to impose that the solution of a Laplacian problem without dirichlet conditions is zero on average in the domain.

References:

The bible of iterative methods: https://www-users.cs.umn.edu/~saad/IterMethBook 2ndEd.pdf

An in depth dive into the CG https://www.cs.cmu.edu/~quake-papers/painless-conjugategradient.pdf

