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Assignment 3.1

1. Compute the entries of K, for the following plane stress triangle:

$1=0, y1:0, .132:3, ygzl, 333:2, y3:2

100 25 O
E=1(25 100 0], h=1
0 0 50

Partial result: K71 = 18.75 and Kgg = 118.75

2. Show that the sum of the rows (and columns) 1, 3 and 5 of K, as well as the sum of rows (and columns) 2,
4 and 6 must vanish, and explain why.

Assignment 3.2

Consider a plane triangular domain of thickness h, with horizontal and vertical edges have length a. Let’s consider
for simplicity a = h = 1. The material parameters are £, v. Initially v is set to zero. Two structural models are
considered for this problem as depicted in the figure:

e A plane linear Turner triangle with the same dimensions.

e A set of three bar elements placed over the edges of the triangular domain. The cross sections for the bars
are A1 = A2 and A3.
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Figure 1: Triangular elements

(a) Calculate the stiffness matrix Ke for both models.

(b) Is there any set of values for cross sections A7 = Ay = A and A3 = A’ to make both stiffness matrix
equivalent: Kpqr = Kirigngle? If not, which are these values to make them as similar as possible?

(¢) Why these two stiffness matrix are not equivalent? Find a physical explanation.
(d) Solve question (a) considering v # 0 and extract some conclusions.

Note: To solve this assignment it’s recommended to check the features of the linear triangle in presentation
“CSMD-05-Linear-Triangle”. Some comments will be given in the next class.
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1 Resolution

1.1 Assignment 3.1: First task

Compute the entries of K, for the following plane stress triangle.

11:0, y1:0, I2:33 y2:17 I3:2a y3:2

100 25 O
E=125 100 0|, h=1
0 0 50
Partial result: K77 = 18.75 and Kgg = 118.75
X3 =(2;2)

X, =(3;1)

x; =(0;0)

Figure 2: Triangle element.

The stiffness matrix of the triangle from Figure [2] is to be calculated. Departing from a stress-strain nodal
displacement scheme, the stiffness matrix will be found using the following descriptions for displacement, strain
and stress:

du = Ny(z,y) - 6a'*)

Neglecting the body forces, the weak form of the stress-strain nodal displacement scheme is expressed as following:

{M(e)r- [//GBiT(%y) D Bi(x,y)-a'*) -t dA] - {&z(e)r-q(e)

Which can be written as:
K@ . gle) — q(E)

The shape functions for N; are calculated as:

1

N; = m(ai + bix + ¢iy) with i =1,2,3
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a; b; and ¢; are as follows:
i =Xj Ye — Tk Yj
bi =y; — Yk
C; = T — IL‘j

The KZ(Je ) their terms are:

dip diz O b; 0
(e) _ T DB tdA — L (b 0 ¢ g ol @
K;; *//eBi D - B, tdA*//CQA(e) [O ¢ bi] di2 day O SYI0) 0 ¢i| -t'“dA
0 0 d33 Cj bj

For every element the terms of K;; should be calculated and as the geometry of elements 1, 3, 4 are equal, the
will be part of a direct sum, for element 2 some difference will be encountered.

For elements 1, 3, 4 the calculation of K is shown:

bi=y2—yzs=-1.0
c1=x3—x9=—1.0
by =y3 —y1 =20
co=x1 —x3 =—2.0
b3 =y1 —y2=-1.0

c3 =x9 — 21 = 3.0

The thickness of the element is ¢ = h = 1 and the area of triangle is calculated as:

1.0 1.0 1.0
Z-A(e):det X1 ) T3 =4
Yy Y2 Y3
~1.0 00 —1.0 ~1.0 00 -101"
0.0 —1.0 —1.0 0.0 —1.0 —1.0
K<€>:// 1120 00 -20| 12050 12050 8 120 00 -20| .,
.24 100 —20 20 o o0 ol 24]00 —20 20
1.0 00 3.0 1.0 00 3.0
0.0 30 —1.0 00 30 —1.0
150 75  —100 —50 50 —25 1875 938  —12.50 —6.25 —6.25 —3.13
75 150 50 100 —125 —250 938 1875 625 1250 —15.63 —31.25
g _ L [-100 50 600 —300 —500 250 | _ |-1250 6.25 7500 —37.50 —62.50 31.25
A | =50 100 —300 600 350 —700 ~6.25 1250 —37.50 75.00  43.75 —87.50
50 —125 —500 350 550 —225 ~6.25 —15.63 —62.50 43.75  68.75 —28.13
~925 9250 250 —700 —225 950 ~3.13 —31.25 3125 —87.50 —28.13 118.75

1.2 Assignment 3.1: Second task

Show that the sum of the rows (and columns) 1, 8 and 5 of K. as well as the sum of rows (and columns) 2, 4 and
6 must vanish, and explain why.

The columns 1, 3 and 5 multiply the wu,1, uze and wu.3 coordinates respectively. They must sum an overall of zero
because, as the stiffness matrix relates displacements with stresses (through strains), one possible displacement
is a rigid-body displacement which do not generate any strains nor stress. Therefore, a rigid-body displacement
scheme has the same value of displacement for every coordinate for example [uz1, Uz2, uzs] = [1, 1, 1] and this
configuration will register a displacement, without any strain, then no stresses and the rigid-body displacement
can be represented. The same happens on columns 2, 4 and 6 for coordinates uy1, uy2 and uyz. For the rows, the
symmetry of the matrix makes the rows to be equal too.
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1.3 Assignment 3.2

Consider a plane triangular domain of thickness h, with horizontal and vertical edges have length a. Let’s consider
for simplicity a = h = 1. The material parameters are E, v. Initially v is set to zero. Two structural models are
considered for this problem as depicted in the figure:

e A plane linear Turner triangle with the same dimensions.

e A set of three bar elements placed over the edges of the triangular domain. The cross sections for the bars
are A1 = A2 and A3.

(a) Calculate the stiffness matrix Ke for both models.

(b) Is there any set of values for cross sections A7 = Ay = A and A3 = A’ to make both stiffness matrix
equivalent: Ky, = Kiriangle? If not, which are these values to make them as similar as possible?

(¢) Why these two stiffness matrix are not equivalent? Find a physical explanation.
(d) Solve question (a) considering v # 0 and extract some conclusions.

Turner: This method is the applied in the previous exercise, therefore the results will be plotted with less detail.

1.0 1.0 1.0
2.4 =det |27 29 3| =1
Y1 Y2 Y3
1.0 00 —1.0 ~10 00 -1.0]"
00 -10 -1.0| rp & o 0.0 —1.0 —1.0
K<e):// 1|10 00 -10| | - & o | L |10 00 —1of
L2400 —10 1.0 0 0 E 241 00 —10 1.0
1.0 00 0.0 2(14) ~1.0 00 00
0.0 00 —1.0 0.0 00 —1.0

EFE+G vE+G —-E+G vE — G FE G
EFE+G —-—vE+G F-G vE G

K(e)—i E+G -vE-G —-FE G
44 E+G vE -G
sym. E 0

G

In the first task for this exercise (task (a)), asks for the result if v = 0, then G = E/2:

3/2 1/2 -1/2 —-1/2 1 1/2
32 1/2 1/2 0 1/2

K@ — E 3/2 —-1/2 -1 1/2
2 3/2 0 -—-1/2

sym. 1 0
1/2

Bar element: To calculate the stiffness matrix of a bar element, the theory of the direct stiffness method from the
first class is used:

c sc  —c* —sc

K@ — E©) . A | se 87 —se =8
N C) —? —sc¢ sc

—s¢ —s* sc §?

where s, ¢ are sin(6;), cos(6;) respectively. The angle of each of the bars are:

61 =90, 62 =0, 63 =315
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0 0 0 0 Ugs
E-A o 1 0 -1 |u
.0 _ A4 v3
LA 1 0 0 0 0 Uy
0 -1 0 1] |up
1 0 —1 0] [us]
E-A o o o o |u
@ . @_bA4 T
K 1 10 1 0| |umy
(0 0 0 0] |up
0.354 —0.354 —0.354 0.354 Ugo
k® o _ B As [-0354 0354 0354 —0.354| |up

1 |—-0354 0354 0354 —0.354|  |uus
0.354 —0.354 —0.354 0.354 U3

Then the global stiffness matrix is calculated after assembling the three elemental matrices:

A 0 —A 0 0 0 Uzl
A 0 0 0 —A Uyl
0354143, 0354A3 —0.354A3 Uy2

SYym. 0.354 A5 —0.354A5 Ug3
A+ 0.354A5 Uy3

Task (b) asks to find values of A and A3 to make both stiffness matrices as similar as possible:

3/4 1/4 —1/4 —1/4 1/2 1/4 A 0 —A 0 0 0
3/4  1/4  1/4 0 1/4 A 0 0 0 —A

3/4  —1/4 —1/2 1/4 | A+05/v243 —05/V/243 —0.5/v/2A3  0.5//2A3

3/4 0 —1/4| — 0.5/v/243  0.5/v/243  —0.5//2A3

sym. 1/2 0 sym. 0.5/v/2A3 —0.5/v/2A3

1/4 A+0.5/V2A45

Clearly there are no values of A and A3 to make both matrices equal. One of the most similar stiffness matrices
will be found if the diagonal terms are similar:

Task (c) asks to explain why these two matrices are not equal.
The reason is that Turner formulation is made for a 2D element, while the direct stiffness method is formulated
for a 1D bar with nothing more than axial stiffness, therefore, the elements will behave completely different.

Task (d) asks to solve the problem with v # 0.

- 1 1 1 1 1
It sqmy vt 205) —1+ 57 ) v— 205) L3 ()
I+ 5y v+ 2 () 1- 204) v 2 (L)
K — B I+ sty Vo zam ! A
2 L+ 2»(11+1/) v - 2-(11+V)
sym. 1 0
1
L 2-(14v) J
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The main difference between the v = 0 and the v # 0 is seen in some coordinates where it used to be a zero, now
there is not. Also, the stiffness over the main diagonal is lower for the v # 0 case as the 1/2(1 + v) term are now
smaller.

2 Conclusions

Two main tasks were solved in the frame of Plane stress problem and linear triangle. In the first, the stiffness
matrix of a triangular element was obtained. Afterwards another triangle was analysed using both 2D description
and a 1D bar description and compared. As a result, the matrices shown major differences due to the physics
being described by each of the models.
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