Homework 3: Plane stress problem and linear triangle

Author:
Mariano Tomás Fernandez

Professor:
Miguel Cervera

Contents

1 Resolution 2
1.1 Assignment 3.1: First task. 2
1.2 Assignment 3.1: Second task 3
1.3 Assignment 3.2 4
2 Conclusions 6

Assignment 3.1

1. Compute the entries of K_{e} for the following plane stress triangle:

$$
\begin{gathered}
x_{1}=0, y_{1}=0, x_{2}=3, y_{2}=1, x_{3}=2, y_{3}=2 \\
E
\end{gathered}
$$

Partial result: $K_{11}=18.75$ and $K_{66}=118.75$
2. Show that the sum of the rows (and columns) 1,3 and 5 of K_{e} as well as the sum of rows (and columns) 2, 4 and 6 must vanish, and explain why.

Assignment 3.2

Consider a plane triangular domain of thickness h, with horizontal and vertical edges have length a. Let's consider for simplicity $a=h=1$. The material parameters are E, ν. Initially ν is set to zero. Two structural models are considered for this problem as depicted in the figure:

- A plane linear Turner triangle with the same dimensions.
- A set of three bar elements placed over the edges of the triangular domain. The cross sections for the bars are $A_{1}=A_{2}$ and A_{3}.

Figure 1: Triangular elements
(a) Calculate the stiffness matrix Ke for both models.
(b) Is there any set of values for cross sections $A_{1}=A_{2}=A$ and $A_{3}=A^{\prime}$ to make both stiffness matrix equivalent: $K_{b a r}=K_{\text {triangle }}$? If not, which are these values to make them as similar as possible?
(c) Why these two stiffness matrix are not equivalent? Find a physical explanation.
(d) Solve question (a) considering $\nu \neq 0$ and extract some conclusions.

Note: To solve this assignment it's recommended to check the features of the linear triangle in presentation "CSMD-05-Linear-Triangle". Some comments will be given in the next class.

1 Resolution

1.1 Assignment 3.1: First task

Compute the entries of K_{e} for the following plane stress triangle.

$$
\begin{aligned}
x_{1}=0, y_{1} & =0, x_{2}=3, y_{2}=1, x_{3}=2, y_{3}=2 \\
E & =\left[\begin{array}{ccc}
100 & 25 & 0 \\
25 & 100 & 0 \\
0 & 0 & 50
\end{array}\right], h=1
\end{aligned}
$$

Partial result: $K_{11}=18.75$ and $K_{66}=118.75$

Figure 2: Triangle element.

The stiffness matrix of the triangle from Figure 2 is to be calculated. Departing from a stress-strain nodal displacement scheme, the stiffness matrix will be found using the following descriptions for displacement, strain and stress:

$$
\begin{gathered}
\delta \underline{u}=\underline{N}_{i}(x, y) \cdot \delta \underline{a}^{\left(e_{i}\right)} \\
\delta \underline{\varepsilon}=\underline{B}_{i}(x, y) \cdot \delta \underline{a}^{\left(e_{i}\right)} \\
\underline{\sigma}=\underline{D} \cdot \underline{B_{i}}(x, y) \cdot \underline{a}^{\left(e_{i}\right)}
\end{gathered}
$$

Neglecting the body forces, the weak form of the stress-strain nodal displacement scheme is expressed as following:

$$
\left[\delta \underline{a}^{(e)}\right]^{T} \cdot\left[\iint_{A^{e}}{\underline{B_{i}}}^{T}(x, y) \cdot \underline{D} \cdot \underline{B}_{i}(x, y) \cdot \underline{a}^{\left(e_{i}\right)} \cdot t d A\right]=\left[\delta a^{(e)}\right]^{T} \cdot q^{(e)}
$$

Which can be written as:

$$
K^{(e)} \cdot a^{(e)}=q^{(e)}
$$

The shape functions for N_{i} are calculated as:

$$
N_{i}=\frac{1}{2 A^{(e)}}\left(a_{i}+b_{i} x+c_{i} y\right) \text { with } i=1,2,3
$$

$a_{i} b_{i}$ and c_{i} are as follows:

$$
\begin{gathered}
a_{i}=x_{j} y_{k}-x_{k} y_{j} \\
b_{i}=y_{j}-y_{k} \\
c_{i}=x_{k}-x_{j}
\end{gathered}
$$

The $K_{i j}^{(e)}$ their terms are:

$$
K_{i j}^{(e)}=\iint_{A^{e}} B_{i}^{T} \cdot D \cdot B_{j} \cdot t d A=\iint_{A^{e}} \frac{1}{2 A^{(e)}} \cdot\left[\begin{array}{ccc}
b_{i} & 0 & c_{i} \\
0 & c_{i} & b_{i}
\end{array}\right] \cdot\left[\begin{array}{ccc}
d_{11} & d_{12} & 0 \\
d_{12} & d_{22} & 0 \\
0 & 0 & d_{33}
\end{array}\right] \cdot \frac{1}{2 A^{(e)}} \cdot\left[\begin{array}{cc}
b_{j} & 0 \\
0 & c_{j} \\
c_{j} & b_{j}
\end{array}\right] \cdot t^{(e)} d A
$$

For every element the terms of $K_{i j}$ should be calculated and as the geometry of elements $1,3,4$ are equal, the will be part of a direct sum, for element 2 some difference will be encountered.
For elements 1, 3, 4 the calculation of K is shown:

$$
\begin{gathered}
b_{1}=y_{2}-y_{3}=-1.0 \\
c_{1}=x_{3}-x_{2}=-1.0 \\
b_{2}=y_{3}-y_{1}=2.0 \\
c_{2}=x_{1}-x_{3}=-2.0 \\
b_{3}=y_{1}-y_{2}=-1.0 \\
c_{3}=x_{2}-x_{1}=3.0
\end{gathered}
$$

The thickness of the element is $t=h=1$ and the area of triangle is calculated as:

$$
\begin{gathered}
2 \cdot A^{(e)}=\operatorname{det}\left[\begin{array}{ccc}
1.0 & 1.0 & 1.0 \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right]=4 \\
K^{(e)}=\iint_{A^{e}} \frac{1}{2 A}\left[\begin{array}{cccc}
-1.0 & 0.0 & -1.0 \\
0.0 & -1.0 & -1.0 \\
2.0 & 0.0 & -2.0 \\
0.0 & -2.0 & 2.0 \\
-1.0 & 0.0 & 3.0 \\
0.0 & 3.0 & -1.0
\end{array}\right] \cdot\left[\begin{array}{ccc}
100 & 25 & 0 \\
25 & 100 & 0 \\
0 & 0 & 50
\end{array}\right] \cdot \frac{1}{2 A}\left[\begin{array}{ccc}
-1.0 & 0.0 & -1.0 \\
0.0 & -1.0 & -1.0 \\
2.0 & 0.0 & -2.0 \\
0.0 & -2.0 & 2.0 \\
-1.0 & 0.0 & 3.0 \\
0.0 & 3.0 & -1.0
\end{array}\right]^{T} d A \\
K^{(e)}=\frac{1}{4 A}\left[\begin{array}{ccccc}
150 & 75 & -100 & -50 & -50 \\
-25 \\
75 & 150 & 50 & 100 & -125 \\
-250 \\
-50 & 50 & 600 & -300 & -500 \\
-50 & -300 & 600 & 350 & -700 \\
-50 & -125 & -500 & 350 & 550 \\
-25 & -250 & 250 & -700 & -225 \\
90
\end{array}\right]=\left[\begin{array}{ccccccc}
18.75 & 9.38 & -12.50 & -6.25 & -6.25 & -3.13 \\
9.38 & 18.75 & 6.25 & 12.50 & -15.63 & -31.25 \\
-12.50 & 6.25 & 75.00 & -37.50 & -62.50 & 31.25 \\
-6.25 & 12.50 & -37.50 & 75.00 & 43.75 & -87.50 \\
-6.25 & -15.63 & -62.50 & 43.75 & 68.75 & -28.13 \\
-3.13 & -31.25 & 31.25 & -87.50 & -28.13 & 118.75
\end{array}\right]
\end{gathered}
$$

1.2 Assignment 3.1: Second task

Show that the sum of the rows (and columns) 1, 3 and 5 of K_{e} as well as the sum of rows (and columns) 2, 4 and 6 must vanish, and explain why.

The columns 1,3 and 5 multiply the $u_{x 1}, u_{x 2}$ and $u_{x 3}$ coordinates respectively. They must sum an overall of zero because, as the stiffness matrix relates displacements with stresses (through strains), one possible displacement is a rigid-body displacement which do not generate any strains nor stress. Therefore, a rigid-body displacement scheme has the same value of displacement for every coordinate for example $\left[u_{x 1}, u_{x 2}, u_{x 3}\right]=[1,1,1]$ and this configuration will register a displacement, without any strain, then no stresses and the rigid-body displacement can be represented. The same happens on columns 2,4 and 6 for coordinates $u_{y 1}, u_{y 2}$ and $u_{y 3}$. For the rows, the symmetry of the matrix makes the rows to be equal too.

1.3 Assignment 3.2

Consider a plane triangular domain of thickness h, with horizontal and vertical edges have length a. Let's consider for simplicity $a=h=1$. The material parameters are E, ν. Initially ν is set to zero. Two structural models are considered for this problem as depicted in the figure:

- A plane linear Turner triangle with the same dimensions.
- A set of three bar elements placed over the edges of the triangular domain. The cross sections for the bars are $A_{1}=A_{2}$ and A_{3}.
(a) Calculate the stiffness matrix Ke for both models.
(b) Is there any set of values for cross sections $A_{1}=A_{2}=A$ and $A_{3}=A^{\prime}$ to make both stiffness matrix equivalent: $K_{b a r}=K_{\text {triangle }}$? If not, which are these values to make them as similar as possible?
(c) Why these two stiffness matrix are not equivalent? Find a physical explanation.
(d) Solve question (a) considering $\nu \neq 0$ and extract some conclusions.

Turner: This method is the applied in the previous exercise, therefore the results will be plotted with less detail.

$$
\begin{gathered}
2 \cdot A^{(e)}=\operatorname{det}\left[\begin{array}{ccc}
1.0 & 1.0 & 1.0 \\
x_{1} & x_{2} & x_{3} \\
y_{1} & y_{2} & y_{3}
\end{array}\right]=1 \\
K^{(e)}=\iint_{A^{e}} \frac{1}{2 A}\left[\begin{array}{ccc}
-1.0 & 0.0 & -1.0 \\
0.0 & -1.0 & -1.0 \\
1.0 & 0.0 & -1.0 \\
0.0 & -1.0 & 1.0 \\
-1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & -1.0
\end{array}\right] \cdot\left[\begin{array}{ccc}
E & \nu E & 0 \\
\nu E & E & 0 \\
0 & 0 & \frac{E}{2 \cdot(1+\nu)}
\end{array}\right] \cdot \frac{1}{2 A}\left[\begin{array}{cccc}
-1.0 & 0.0 & -1.0 \\
0.0 & -1.0 & -1.0 \\
1.0 & 0.0 & -1.0 \\
0.0 & -1.0 & 1.0 \\
-1.0 & 0.0 & 0.0 \\
0.0 & 0.0 & -1.0
\end{array}\right] d A \\
K^{(e)}=\frac{1}{4 A} \cdot\left[\begin{array}{cccc}
E+G & \nu E+G & -E+G & \nu E-G \\
E+G & E & G \\
-\nu E+G & E-G & \nu E & G \\
E+G & -\nu E-G & -E & G \\
E+G & \nu E & -G \\
E & \\
\text { sym. }
\end{array}\right.
\end{gathered}
$$

In the first task for this exercise (task (a)), asks for the result if $\nu=0$, then $G=E / 2$:

$$
K^{(e)}=\frac{E}{2}\left[\begin{array}{cccccc}
3 / 2 & 1 / 2 & -1 / 2 & -1 / 2 & 1 & 1 / 2 \\
& 3 / 2 & 1 / 2 & 1 / 2 & 0 & 1 / 2 \\
& & 3 / 2 & -1 / 2 & -1 & 1 / 2 \\
& & & 3 / 2 & 0 & -1 / 2 \\
& \text { sym. } & & & 1 & 0 \\
& & & & & 1 / 2
\end{array}\right]
$$

Bar element: To calculate the stiffness matrix of a bar element, the theory of the direct stiffness method from the first class is used:

$$
K^{(e)}=\frac{E^{(e)} \cdot A^{(e)}}{L^{(e)}} \cdot\left[\begin{array}{cccc}
c^{2} & s c & -c^{2} & -s c \\
s c & s^{2} & -s c & -s^{2} \\
-c^{2} & -s c & c^{2} & s c \\
-s c & -s^{2} & s c & s^{2}
\end{array}\right]
$$

where s, c are $\sin \left(\theta_{i}\right), \cos \left(\theta_{i}\right)$ respectively. The angle of each of the bars are:

$$
\theta_{1}=90, \theta_{2}=0, \theta_{3}=315
$$

$$
\begin{gathered}
K^{(1)} \cdot \underline{u}^{(1)}=\frac{E \cdot A}{1} \cdot\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{l}
u_{x 3} \\
u_{y 3} \\
u_{x 1} \\
u_{y 1}
\end{array}\right] \\
K^{(2)} \cdot \underline{u}^{(2)}=\frac{E \cdot A}{1} \cdot\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \cdot\left[\begin{array}{l}
u_{x 2} \\
u_{y 2} \\
u_{x 1} \\
u_{y 1}
\end{array}\right] \\
K^{(3)} \cdot \underline{u}^{(3)}=\frac{E \cdot A_{3}}{1} \cdot\left[\begin{array}{cccc}
0.354 & -0.354 & -0.354 & 0.354 \\
-0.354 & 0.354 & 0.354 & -0.354 \\
-0.354 & 0.354 & 0.354 & -0.354 \\
0.354 & -0.354 & -0.354 & 0.354
\end{array}\right] \cdot\left[\begin{array}{l}
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]
\end{gathered}
$$

Then the global stiffness matrix is calculated after assembling the three elemental matrices:

$$
K_{G} \cdot \underline{u}=E \cdot\left[\begin{array}{cccccc}
A & 0 & -A & 0 & 0 & 0 \\
& A & 0 & 0 & 0 & -A \\
& & A+0.354 A_{3} & -0.354 A_{3} & -0.354 A_{3} & 0.354 A_{3} \\
& & & 0.354 A_{3} & 0.354 A_{3} & -0.354 A_{3} \\
& \text { sym. } & & & 0.354 A_{3} & -0.354 A_{3} \\
& & & & & A+0.354 A_{3}
\end{array}\right] \cdot\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]
$$

Task (b) asks to find values of A and A_{3} to make both stiffness matrices as similar as possible:

$$
\left[\begin{array}{cccccc}
3 / 4 & 1 / 4 & -1 / 4 & -1 / 4 & 1 / 2 & 1 / 4 \\
& 3 / 4 & 1 / 4 & 1 / 4 & 0 & 1 / 4 \\
& & 3 / 4 & -1 / 4 & -1 / 2 & 1 / 4 \\
& & & 3 / 4 & 0 & -1 / 4 \\
& \text { sym. } & & & 1 / 2 & 0 \\
& & & & & 1 / 4
\end{array}\right]=\left[\begin{array}{cccccc}
A & 0 & -A & 0 & 0 & 0 \\
& A & 0 & 0 & 0 & -A \\
& & A+0.5 / \sqrt{2} A_{3} & -0.5 / \sqrt{2} A_{3} & -0.5 / \sqrt{2} A_{3} & 0.5 / \sqrt{2} A_{3} \\
& & & 0.5 / \sqrt{2} A_{3} & 0.5 / \sqrt{2} A_{3} & -0.5 / \sqrt{2} A_{3} \\
& \text { sym. } & & & 0.5 / \sqrt{2} A_{3} & -0.5 / \sqrt{2} A_{3} \\
& & & & & A+0.5 / \sqrt{2} A_{3}
\end{array}\right]
$$

Clearly there are no values of A and A_{3} to make both matrices equal. One of the most similar stiffness matrices will be found if the diagonal terms are similar:

$$
A=\frac{3}{4}, A_{3}=\frac{1}{\sqrt{2}}
$$

Task (c) asks to explain why these two matrices are not equal.
The reason is that Turner formulation is made for a 2 D element, while the direct stiffness method is formulated for a 1D bar with nothing more than axial stiffness, therefore, the elements will behave completely different.
Task (d) asks to solve the problem with $\nu \neq 0$.

$$
K^{(e)}=\frac{E}{2} \cdot\left[\begin{array}{cccccc}
1+\frac{1}{2 \cdot(1+\nu)} & \nu+\frac{1}{2 \cdot(1+\nu)} & -1+\frac{1}{2 \cdot(1+\nu)} & \nu-\frac{1}{2 \cdot(1+\nu)} & 1 & \frac{1}{2 \cdot(1+\nu)} \\
& 1+\frac{1}{2 \cdot(1+\nu)} & -\nu+\frac{1}{2 \cdot(1+\nu)} & 1-\frac{1}{2 \cdot(1+\nu)} & \nu & \frac{1}{2 \cdot(1+\nu)} \\
& & 1+\frac{1}{2 \cdot(1+\nu)} & -\nu-\frac{1}{2 \cdot(1+\nu)} & -1 & \frac{1}{2 \cdot(1+\nu)} \\
& \text { sym. } & & 1+\frac{1}{2 \cdot(1+\nu)} & \nu & -\frac{1}{2 \cdot(1+\nu)} \\
& & & 1 & 0 \\
& & & & \frac{1}{2 \cdot(1+\nu)}
\end{array}\right]
$$

The main difference between the $\nu=0$ and the $\nu \neq 0$ is seen in some coordinates where it used to be a zero, now there is not. Also, the stiffness over the main diagonal is lower for the $\nu \neq 0$ case as the $1 / 2(1+\nu)$ term are now smaller.

2 Conclusions

Two main tasks were solved in the frame of Plane stress problem and linear triangle. In the first, the stiffness matrix of a triangular element was obtained. Afterwards another triangle was analysed using both 2D description and a 1D bar description and compared. As a result, the matrices shown major differences due to the physics being described by each of the models.

