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Assignment 3.1

On “The Plane Stress Problem”:

In isotropic elastic materials (as well as in plasticity and viscoelasticity) it is conve-
nient to use the so-called Lamé constants λ and µ instead of E and ν in the consti-
tutive equations. Both λ and µ have the physical dimension of stress and are related
to E and ν by

λ =
Eν

(1 + ν)(1− 2ν)
µ = G =

E
2(1+ ν)

1. Find the inverse relations for E, ν in terms of λ, µ.

Solution: We know,

µ =
E

2(1+ ν)
or E = 2µ(1 + ν)

Using this in the equation for λ, we get,

λ =
Eν

(1 + ν)(1− 2ν)
=

2µν(1 + ν)
(1 + ν)(1− 2ν)

=
2µν
1− 2ν

Therefore,

λ(1− 2ν) = 2µν =⇒ λ− 2λν = 2µν =⇒ λ = 2ν(λ+µ)

Hence, we get,

ν =
λ

2(λ+µ)

Now using this in the equation for E, we get,

E = 2µ
(
1+

[ λ
2(λ+µ)

])

E = µ
(2µ+2λ+λ

λ+µ

)
Hence, we get,

E = µ
(2µ+3λ
λ+µ

)
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2. Express the elastic matrix for plane stress and plane strain cases in terms of λ, µ.

Solution: The elastic matrix for plane stress condition is given as,

Eσ =
E

1− ν2


1 ν 0
ν 1 0

0 0
1
2
(1− ν)


where Eσ denotes the elastic matrix for plane stress condition.

Given that,
E = 2µ(1 + ν)

we have,

Eσ =
2µ(1 + ν)
1− ν2


1 ν 0
ν 1 0

0 0
1
2
(1− ν)


As shown in section 1, we know

ν =
λ

2(λ+µ)

Using this we get,

Eσ =
2µ(

1− λ
2(λ+µ)

)


1
λ

2(λ+µ)
0

λ
2(λ+µ)

1 0

0 0
1
2

(
1− λ

2(λ+µ)

)


Simplifying, we get,

Eσ =
4µ(λ+µ)
λ+2µ


1

λ
2(λ+µ)

0

λ
2(λ+µ)

1 0

0 0
λ+2µ
4λ+4µ


Hence,

Eσ =


4µ(λ+µ)
λ+2µ

2λµ
λ+2µ

0

2λµ
λ+2µ

4µ(λ+µ)
λ+2µ

0

0 0 µ
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Similarly, we know the elastic matrix for plane strain condition Eε is given as,

Eε =
E(1− ν)

(1 + ν)(1− 2ν)


1

ν
1− ν

0
ν

1− ν
1 0

0 0
1− 2ν
2(1− ν)


Given that,

E =
λ(1 + ν)(1− 2ν)

ν

we have,

Eε =
λ(1 + ν)(1− 2ν)(1− ν)

ν(1 + ν)(1− 2ν)


1

ν
1− ν

0
ν

1− ν
1 0

0 0
1− 2ν
2(1− ν)


which on simplifying results in,

Eε =
λ(1− ν)

ν


1

ν
1− ν

0
ν

1− ν
1 0

0 0
1− 2ν
2(1− ν)


Further simplification leads us to,

Eε =


λ(1− ν)

ν
λ 0

λ
λ(1− ν)

ν
0

0 0
λ(1− 2ν)

2ν



Eε =


λ(

1
ν
− 1) λ 0

λ λ(
1
ν
− 1) 0

0 0 λ(
1
2ν
− 1)


Again, using the expression for ν, we get,

Eε =

λ+2µ λ 0
λ λ+2µ 0
0 0 µ
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3. Split the stress-strain matrix E for plane strain as

E = Eλ +Eµ

in which Eµ and Eλ contain only µ and λ, respectively.

This is the Lamé {λ,µ} splitting of the plane strain constitutive equations, which leads
to the so-called B-bar formulation of near-incompressible finite elements.

Solution: In the previous section, the the stress-strain matrix E for plane strain was
deduced as,

E =

λ+2µ λ 0
λ λ+2µ 0
0 0 µ


To perform Lamé splitting for the plane strain condition, we split the elastic matrix
E into Eµ and Eλ containing only µ and λ respectively, as

E =

λ λ 0
λ λ 0
0 0 0

+
2µ 0 0
0 2µ 0
0 0 µ


where,

Eλ =

λ λ 0
λ λ 0
0 0 0

 and Eµ =

2µ 0 0
0 2µ 0
0 0 µ


4. Express Eλ and Eµ also in terms of E and ν.

Solution: Using the expressions given for λ and µ as,

λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E
2(1+ ν)

we express Eλ and Eµ as,

Eλ =
Eν

(1 + ν)(1− 2ν)

1 1 0
1 1 0
0 0 0

 and Eµ =
E

2(1+ ν)

2 0 0
0 2 0
0 0 1
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Assignment 3.2

On “The 3-node Plane Stress Triangle”:

Consider a plane triangular domain of thickness h, with horizontal and vertical edges
of length a. Let us consider for simplicity a = 1, h = 1. The material parameters
are E, ν. Initially ν is set to zero. Two discrete structural models are considered as
depicted in the figure:

Figure 1

a) A plane linear Turner triangle with the same dimensions.

b) A set of three bar elements placed over the edges of the triangular domain. The
cross sections for the bars are A1 = A2 and A3.

1. Calculate the stiffness matrices Ktri and Kbar for both discrete models.

Solution: The element stiffness matrix for a linear triangle element is given as,

Ktri =Ke =
∫
Ωe
hBTEBdΩ

Given that the plane triangular domain is of constant thickness h = 1, we get the
expression for element stiffness matrix as,

Ktri = hAB
TEB

For plane stress case, we know,

E =
E

1− ν2


1 ν 0
ν 1 0

0 0
1− ν
2
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It is also given that initially, ν is set to zero, which gives us,

E = E


1 0 0
0 1 0

0 0
1
2


Also, the matrix B is given as,

B =
1
2A

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21
x32 y23 x13 y31 x21 y12


where,

y12 = y1 − y2 = 0; y23 = y2 − y3 = −1; y31 = y3 − y1 = 1

x13 = x1 − x3 = 0; x32 = x3 − x2 = −1; x21 = x2 − x1 = 1

Thus we find the element stiffness matrix as,

Ktri =
hA

4A2



y23 0 x32
0 x32 y23
y31 0 x13
0 x13 y31
y12 0 x21
0 x21 y12


E

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21
x32 y23 x13 y31 x21 y12


Using the values derived above and noting that A = 1/2 is the area of the triangle,
we get,

Ktri =
E
2



−1 0 −1
0 −1 −1
1 0 0
0 0 1
0 0 1
0 1 0



1 0 0
0 1 0

0 0
1
2


−1 0 1 0 0 0
0 −1 0 0 0 1
−1 −1 0 1 1 0


Hence,

Ktri =
E
4



3 1 −2 −1 −1 0
1 3 0 −1 −1 −2
−2 0 2 0 0 0
−1 −1 0 1 1 0
−1 −1 0 1 1 0
0 −2 0 0 0 2
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Now, in order to find the stiffness matrix Kbar , we need to get the element stiffness
matrix of each bar element given as,

Ke =
EeAe

Le


c2 sc −c2 −sc
sc s2 −sc −s2
−c2 −sc c2 sc
−sc −s2 sc s2


where s = sin α, c = cos α and α is the angle formed by the bar element with the
global x-coordinate measured in the counter-clockwise direction.

Now, for element 1, α = π/2 =⇒ c = 0 and s = 1

K(1) = EA1


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1


Similarly, for element 2, α = 0 =⇒ c = 1 and s = 0

K(2) = EA2


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0


And, for element 3, α = 3π/4 =⇒ c = −1/

√
2 and s = 1/

√
2

K(3) =
EA3

2
√
2


1 −1 −1 1
−1 1 1 −1
−1 1 1 −1
1 −1 −1 1


We note that the cross sections for the bar elements are given as A1 = A2 and
assemble the above elemental matrices to give us the global stiffness matrix as,

Kbar =
E

2
√
2



2A1
√
2 0 −2A1

√
2 0 0 0

0 2A1
√
2 0 0 0 −2A1

√
2

−2A1
√
2 0 2A1

√
2+A3 −A3 −A3 A3

0 0 −A3 A3 A3 −A3
0 0 −A3 A3 A3 −A3

0 −2A1
√
2 A3 −A3 −A3 2A1

√
2+A3
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2. Is there any set of values for the cross sections A1 = A2 and A3 to make both
stiffness matrix equivalent: Ktri = Kbar? If not, which are the values that make
them more similar?

Solution: The stiffness matrices Ktri and Kbar derived for both discrete models are
given as,

Ktri =
E
4



3 1 −2 −1 −1 0
1 3 0 −1 −1 −2
−2 0 2 0 0 0
−1 −1 0 1 1 0
−1 −1 0 1 1 0
0 −2 0 0 0 2



Kbar =
E
4



4A1 0 −4A1 0 0 0
0 4A1 0 0 0 −4A1

−4A1 0 4A1 +A3
√
2 −A3

√
2 −A3

√
2 A3

√
2

0 0 −A3
√
2 A3

√
2 A3

√
2 −A3

√
2

0 0 −A3
√
2 A3

√
2 A3

√
2 −A3

√
2

0 −4A1 A3
√
2 −A3

√
2 −A3

√
2 4A1 +A3

√
2


Comparing the above matrices, we note that for cross sections A1 = A2 and A3,
there are no set of values to make both stiffness matrix equivalent. This is inferred
by noticing the uneven distribution of zeros in the off-diagonal terms of both ma-
trices. Therefore it is not possible to make Ktri = Kbar . But it is possible to make
them more similar by attempting to equate the non-zero stiffness coefficients in both
matrix. Firstly we see that the diagonal of both matrices has non-zero entries.

Therefore, if we equate Ktri11= Kbar11 to get 4A1= 3 =⇒ A1 = 3/4. Similarly,
equating Ktri44= Kbar44, we get A3= 1/

√
2.

By assuming these values, we can make 14 stiffness coefficients out of the 6×6 matrix
similar in both matrices, which are highlighted below. The values highlighted with
green are exactly matching in both matrices whereas the ones marked with blue are
similar. All other stiffness coefficients can not be matched.

Ktri =
E
4

3 1 −2 −1 −1 0
1 3 0 −1 −1 −2
−2 0 2 0 0 0
−1 −1 0 1 1 0
−1 −1 0 1 1 0
0 −2 0 0 0 2




Kbar =

E
4

3 0 −3 0 0 0
0 3 0 0 0 −3
−3 0 4 −1 −1 1
0 0 −1 1 1 −1
0 0 −1 1 1 −1
0 −3 1 −1 −1 4
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3. Why these two stiffness matrices are not equal? Find a physical explanation.

Solution: It is seen that it’s not possible to make the two stiffness matrices equal
for any set of values of the cross sections of the bar element. This is because the two
elements compared look similar - set of three bar elements in a triangular domain
and plane linear turner triangle with the same dimensions, but behave differently
in presence of applied force or displacement. It is because the material distribution
is even throughout the area of the triangular element whereas a set of bars only
consider the material concentrating on the bar elements and not in the triangular
domain formed as shown in Figure 2. Another fact to consider is the presence of
thickness of the triangular element, which is not incorporated exactly by the set of
bar elements. Therefore it is unfair to try to match the stiffness matrices for both
cases.

Figure 2: Material distribution in (a) triangular element and (b) set of bars

4. Consider now ν , 0 and extract some conclusions.

Solution: For ν , 0, the matrix E changes in the plane stress case as,

E =
E

1− ν2


1 ν 0
ν 1 0

0 0
1− ν
2


We notice that the matrix is still symmetric but not a diagonal matrix as in the
earlier case. This physically means that now the Poisson’s effect is considered for the
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element i.e. the stress accounts for shear effects also. Using the new matrix E, we
get the stiffness matrix as,

Ktri =
E

4(1− ν2)



3− ν 1+ ν −2 −1+ ν −1+ ν −2ν
1+ ν 3− ν −2ν −1+ ν −1+ ν −2
−2 −2ν 2 0 0 2ν
−1+ ν −1+ ν 0 1− ν 1− ν 0
−1+ ν −1+ ν 0 1− ν 1− ν 0
−2ν −2 2ν 0 0 2


The above matrix clearly shows the effect of including the poisson’s ratio in the stiff-
ness calculation. We notice that almost all the stiffness coefficients have an impact
of this inclusion. The presence of the term ν in most of the coefficients means that
the stress in one direction has an effect in all elements.
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