Assignment 3.1

On "The Plane Stress Problem":

In isotropic elastic materials (as well as in plasticity and viscoelasticity) it is convenient to use the so-called Lamé constants λ and μ instead of E and v in the constitutive equations. Both λ and μ have the physical dimension of stress and are related to E and v by

$$\lambda = \frac{E\nu}{(1+\nu)(1-2\nu)} \quad \mu = G = \frac{E}{2(1+\nu)}$$

- 1. Find the inverse relations for E,v in terms of λ , μ .
- 2. Express the elastic matrix for plane stress and plane strain cases in terms of λ,μ .
- 3. Split the stress-strain matrix E for plane strain as

$$E = E_{\lambda} + E_{\mu}$$

in which $E\mu$ and E_{λ} contain only μ and λ , respectively.

This is the Lamé $\{\lambda,\mu\}$ splitting of the plane strain constitutive equations, which leads to the so-called B-bar formulation of near-incompressible finite elements.

4. Express E_{λ} and E_{μ} also in terms of E and v.

Assignment 3.2

On "The 3-node Plane Stress Triangle":

Consider a plane triangular domain of thickness h, with horizontal and vertical edges of length a. Let us consider for simplicity a = 1, h = 1. The material parameters are E, v. Initially v is set to zero. Two discrete structural models are considered as depicted in the figure:

- a) A plane linear Turner triangle with the same dimensions.
- **b**) A set of three bar elements placed over the edges of the triangular domain. The cross sections for the bars are $A_1 = A_2$ and A_3 .

- 1. Calculate the stiffness matrices K_{tri} and K_{bar} for both discrete models.
- 2. Is there any set of values for the cross sections $A_1=A_2$ and A_3 to make both stiffness matrix equivalent: $K_{bar} = K_{tri}$? If not, which are the values that make them more similar?
- 3. Why these two stiffness matrices are not equal?. Find a physical explanation.
- **4.** Consider nowidering $v \neq 0$ and extract some conclusions.

Date of Assignment:	19 / 02 / 2018
Date of Submission:	26 / 02 / 2018

The assignment must be submitted as a pdf file named **As3-Surname.pdf** to the CIMNE virtual center.