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On “Plane stress problem” and “Linear Triangle”

1 Assignment 3.1

1. Compute the entries of Ke for the following plane stress triangle:

x1 = 0; y1 = 0; x2 = 3; y2 = 1; x3 = 2; y3 = 2

E =

100 25 0
25 100 0
0 0 50

 , h = 1

Partial result: K11 = 18, 75, K66 = 118, 75.

2. Show that the sum of the rows (and columns) 1, 3 and 5 of Ke as well as the sum of
rows (and columns) 2, 4 and 6 must vanish, and explain why.

1.1 Solution

Since h = 1 = constant, we are facing a plane stress problem where the stiffness matrix is
defined by the following expression:

Ke = BTEB

Ke =
h

4A


y23 0 x32
0 x32 y23
y31 0 x13
0 x13 y31
y12 0 x21
0 x21 y12


E11 E12 E13

E21 E22 E23

E31 E32 E33

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21
x32 y23 x13 y31 x21 y12



Where:
xjk = xj–xk yjk = yj–yk

The area can be obtained as follows:

A =
1

2
det(

1 0 0
1 3 1
1 2 2

) = 2

Obtaining the B matrix and substituting A and E into Ke, it yields as follows:

Ke =
1

4(2)


−1 0 −1
0 −1 −1
2 0 −2
0 −2 2
−1 0 3
0 3 −1


100 25 0

25 100 0
0 0 50

−1 0 2 0 −1 0
0 −1 0 −2 0 3
−1 −1 −2 2 3 −1



Ke =


18.75 9.375 −12.5 −6.25 −6.25 −3.125
9.375 18.75 6.25 12.5 −15.625 −31.25
−12.5 6.25 75 −37.5 −62.5 31.25
−6.25 12.5 −37.5 75 43.75 −87.5
−6.25 −15.625 −62.5 43.75 68.75 −28.125
−3.125 −31.25 31.25 −87.5 −28.125 118.75


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1.2 Solution

To show the 2nd statement of the problem, from the first row, we are going to sum the 1,3
and 5 stiffness:

18.75− 12.5− 6.25 = 0

And know the 2,4 and 6:
9.375− 6.25− 3.125 = 0

1.3 Conclusion

This occurs due to the following principles:

• Compatibility: The joint displacements of all members meeting at a joint must be the
same.

• Equilibrium: The sum of forces exerted by all members that meet at a joint must
balance the external force applied to that joint.

2 Assignment 3.2

Consider a plane triangular domain of thickness h, with horizontal and vertical edges have
length a. Let’s consider for simplicity a = h = 1. The material parameters are E,ν. Initially
ν is set to zero. Two structural models are considered for this problem as depicted in the
figure:

• A plane linear Turner triangle with the same dimensions.

• A set of three bar elements placed over the edges of the triangular domain. The cross
sections for the bars are A1 = A2 and A3.

1. Calculate the stiffness matrix Ke for both models.

2. Is there any set of values for cross sections A1 = A2 = A and A3 = A′ to make both
stiffness matrix equivalent: Kbar = Ktriangle? If not, which are these values to make
them as similar as possible?
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3. Why these two stiffness matrix are not equivalent? Find a physical explanation.

4. Solve question 1) considering ν 6= 0 and extract some conclusions.

2.1 Solution

2.1.1 Turner triangle

Ke = BTEB

Ke =
h

4A


y23 0 x32
0 x32 y23
y31 0 x13
0 x13 y31
y12 0 x21
0 x21 y12


E11 E12 E13

E21 E22 E23

E31 E32 E33

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21
x32 y23 x13 y31 x21 y12



Substituting:

Ke =
1

4(A)


−1 0 −1
0 −1 −1
1 0 0
0 0 1
0 0 1
0 1 0

E
1 0 0

0 1 0
0 0 0.5

−1 0 1 0 0 0
0 −1 0 0 0 1
−1 −1 0 1 1 0



Ke =
E

4A


1.5 0.5 −1 −0.5 −0.5 0
0.5 1.5 0 −0.5 −0.5 −1
−1 0 1 0 0 0
−0.5 −0.5 0 0.5 0.5 0
−0.5 −0.5 0 0.5 0.5 0

0 −1 0 0 0 1


2.1.2 Three bar

Element 1

K1 = EA1


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0



ux1
uy1
ux2
uy2


Element 2

K2 = EA2


√
2
4
−
√
2
4
−
√
2
4

√
2
4

−
√
2
4

√
2
4

√
2
4
−
√
2
4

−
√
2
4

√
2
4

√
2
4
−
√
2
4√

2
4
−
√
2
4
−
√
2
4

√
2
4



ux2
uy2
ux3
uy3


Element 3

K3 = EA3


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



ux1
uy1
ux3
uy3


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Global stiffness matrix:

K =
E

4



4A1 0 −4A1 0 0 0
0 4A3 0 0 0 −4A3

−4A1 0 4A1 + A2

√
2 −A2

√
2
4
−A2

√
2
4

A2

√
2
4

0 0 −A2

√
2
4

A2

√
2
4

A2

√
2
4

−A2

√
2
4

0 0 −A2

√
2
4

A2

√
2
4

A2

√
2
4

−A2

√
2
4

0 −4A3 A2

√
2
4

−A2

√
2
4
−A2

√
2
4

4A3 +
√
2
4


Setting A1 = A3 = A and A2 = A′: Global stiffness matrix:

K =
E

4



4A 0 −4A 0 0 0
0 4A 0 0 0 −4A

−4A 0 4A+ A′
√

2 −A′
√
2
4
−A′

√
2
4

A′
√
2
4

0 0 −A′
√
2
4

A′
√
2
4

A′
√
2
4

−A′
√
2
4

0 0 −A′
√
2
4

A′
√
2
4

A′
√
2
4

−A′
√
2
4

0 −4A A′
√
2
4

−A′
√
2
4
−A′

√
2
4

4A+
√
2
4


And comparing this matrix with the one we obtained from the triangular plate:

Ke =
E

4(1− v2)


1.5/A 0.5/A −1/A −0.5/A −0.5/A 0
0.5/A 1.5/A 0 −0.5/A −0.5/A −1/A
−1/A 0 1/A 0 0 0
−0.5/A −0.5/A 0 0.5/A 0.5/A 0
−0.5/A −0.5/A 0 0.5/A 0.5/A 0


2.2 Conclusion

Establishing a value of A’ that allows us to resemble the stiffness matrix of a one-dimensional
problem with the stiffness matrix of a plane stress problem makes no sense. This is because
the spatial conditions and properties of the materials are different. Hooke’s law for one-
dimensional problems does not consider shear stress in the elements, so the relationship
between the parallel and perpendicular deformations to the plane of application of forces
(Poisson coefficient) does not come into play, while in a plane stress problem this will be
reflected in the application of the constitutive matrix of the element.

2.3 Solution with v 6= 0

If we now consider the Poisson constant to be v 6= 0, the following stiffness matrix is obtained:

Ke =
h

4A


y23 0 x32
0 x32 y23
y31 0 x13
0 x13 y31
y12 0 x21
0 x21 y12


E

1− v2

v 1 0
1 v 0
0 0 1−v

2

y23 0 y31 0 y12 0
0 x32 0 x13 0 x21
x32 y23 x13 y31 x21 y12



Where:

A =
1

2
det(

1 0 0
1 1 0
1 0 1

) =
1

2
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Ke =
E

4(1− v2)


3− v 1 + v −2 −1 + v −1 + v −2v
1 + v 3− v −2v −1 + v −1 + v −2
−2 −2v 2 0 0 2v
−1 + v −1 + v 0 1− v 1− v 0
−1 + v −1 + v 0 1− v 1− v 0
−2v −2 2v 0 0 2


2.4 Conclusion

The Poisson coefficient describes the expansion/contraction of material in a perpendicular
direction to the applied force, therefore, it is now reflected in the stiffness matrix values
that relate perpendicular axes such as the case of the stiffness presented in node 3 on the
”y” axis in relation to the force that is applied in the direction of the ”x” axis in node 1.
due to the presence of shear stress. For the second case, in which we have a problem with
one-dimensional elements, the Poisson coefficient does not play any roll, so it does not reflect
any difference in the stiffness matrix, therefore it will remain the same .
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