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1- Introduction 

The goal of the assignment is to analyze the Plane Stress Problem and the Linear 

Triangle element and apply their formulations. A discussion on both subjects was also 

considered. 

2 – Assignment 3.1 

2.1 – Part 1 

 To compute the element stiffness matrix Ke with the data provided in the 

assignment [1], the following equations were applied [2]: 

                                              𝑲(𝑒)  =  ∬ 𝑩𝑇𝑫𝑩𝑡𝑑𝐴
𝐴(𝑒)                                   (1) 

where the constitutive matrix D for plane stress analysis is defined as [2]:  

                                           𝑫 =  

[
 
 
 
 

𝐸

1 − 𝜐2

𝜐𝐸

1 − 𝜐2
0

𝜐𝐸

1 − 𝜐2

𝐸

1 − 𝜐2
0

0 0
𝐸

2(1+𝜐)]
 
 
 
 

                                    (2) 

 The matrix B is named as element strain matrix and is defined as [2]: 

                                     𝑩 =  
𝟏

𝟐𝑨(𝒆)
[

𝑏1 0 𝑏2 0 𝑏3 0
0 𝑐1 0 𝑐2 0 𝑐3

𝑐1 𝑏1 𝑐2 𝑏2 𝑐3 𝑏3

]                           (3) 

where the coefficients are related to the coordinates of nodes of the element. They are 

calculated with the following equation [2]: 

                                  𝑏𝑖  =  𝑦𝑗  −  𝑦𝑖 ,  𝑐𝑖  =  𝑥𝑘  −  𝑥𝑗;   i, j, k = 1,2,3                   (4) 

 Considering the assignment data [1] and applying them to Equations 1-4, the 

element stiffness matrix Ke can be computed: 
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𝑲𝒆  =  

[
 
 
 
 
 

18.75 9.375 −12.5 −6.25 −6.25 −3.125
9.375 18.75 6.25 12.5 −15.625 −31.25
−12.5 6.25 75 −37.5 −62.5 31.25
−6.25 12.5 −37.5 75 43.75 −87.5
−6.25 −15.625 −62.5 43.75 68.75 −28.125
−3.125 −31.25 31.25 −87.5 −28.125 118.75 ]

 
 
 
 
 

 

2.2 – Part 2 

 The stiffness matrix Ke computed in section 2.1 has rows and columns that if added 

up, will result in a zero vector. Also, adding up the coefficients of a single row or column 

will result in a sum equal to zero. As an example, the sum of the 3rd row coefficients, the 

sum of the 1st, 3rd and 5th rows and the sum of the 2nd, 4th and 6th columns are 

presented: 

Sum of the coefficients from 3rd row: 

-12.5 + 6.25 +75 -37.5 -62.5 + 31.25 =0 

Sum of the 1st, 3rd and 5th row vectors: 

[18.75  9.375  -12.5  -6.25  -6.25  -3.125] 

                          +          [-12.5    6.25   75   -37.5    -62.5    31.25] 

                          +      [-6.25  -15.625  -62.5  -43.75  -68.75  -28.125] 

=  [0  0  0  0  0  0] 

Sum of the 2nd, 4th and 4th column vectors: 

[9.375  18.75  6.25  12.5  -15.625  -31.25]T 

                          +          [-6.25    12.5   -37.5   75    43.75    -87.5]T 

                          +      [-3.125  -31.25  31.25  -87.5  -28.125  118.75]T 

=  [0  0  0  0  0  0]T 

 The zero values for the sum among either rows or columns or their coefficients 

must be obtained in order to guarantee the equilibrium between internal and external 

forces. If the global stiffness matrix does not have zero values for such sums, the values 
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of the displacement and consequently the reaction forces will be miscalculated and 

resultant force acting on the structure will be different than zero. Therefore, the equilibrium 

conditions would not be met. 

3 – Assignment 3.2 

3.1 – Part A 

 Considering the plane linear Turner Triangle (Figure 1) with thickness t = 1, edge 

length of a = 1 and material parameters E ≠ 0 and 𝜐 = 0, its stiffness matrix Ktriangle can be 

computed [1]. The Equations 1-4 are applied to obtain the following stiffness matrix for 

the Turner Triangle Ktriangle: 

 

Figure 1. Turner Triangle 

𝑲𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒  =  

[
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 To compute the global stiffness matrix of the truss Kbar depicted in Figure 2, the 

element stiffness matrices K(e) must be computed. The following equations are applied to 

compute such matrices [3]: 

 

Figure 2. Truss 

                                                  𝑲(𝑒)  =  (𝑻(𝑒))𝑇𝑲𝑙𝑜𝑐𝑎𝑙
(𝑒)

𝑻(𝑒)                                       (5) 

 where: 

                                𝑲𝑙𝑜𝑐𝑎𝑙
(𝑒)

 =  (
𝐸𝐴

𝐿
)
(𝑒)

[

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

]                              (6) 

                                          𝑻(𝑒)  =  [

𝑐 −𝑠 0 0
−𝑠 𝑐 0 0
0 0 𝑐 −𝑠
0 0 −𝑠 𝑐

]                              (7) 

 Considered the data provided in the assignment [1], the element stiffness 

matrices are: 

𝑲(1)  =  (𝐸𝐴1) [

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

] 
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𝑲(2)  =  (𝐸𝐴2) [

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

] 

𝑲(3)  =  (
𝐸𝐴3

√2
) [

0.5 −0.5 −0.5 0.5
−0.5 0.5 0.5 −0.5
−0.5 0.5 0.5 −0.5
0.5 −0.5 −0.5 0.5

] 

 Considering A1 = A2 = A and the computed stiffness matrices K(1), K(2), K(3),  it is 

possible to assemble the global stiffness matrix for the truss Kbar : 

𝑲𝑏𝑎𝑟  =  

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐸𝐴 0 −𝐸𝐴 0 0 0

0 𝐸𝐴 0 0 0 −𝐸𝐴

−𝐸𝐴 0 𝐸𝐴 + 
𝐸𝐴3

2√2

−𝐸𝐴3

2√2

−𝐸𝐴3

2√2

𝐸𝐴3

2√2

0 0
−𝐸𝐴3

2√2

𝐸𝐴3

2√2

𝐸𝐴3

2√2

−𝐸𝐴3

2√2

0 0
−𝐸𝐴3

2√2

𝐸𝐴3

2√2

𝐸𝐴3

2√2

−𝐸𝐴3

2√2

0 −𝐸𝐴
𝐸𝐴3

2√2

−𝐸𝐴3

2√2

−𝐸𝐴3

2√2
𝐸𝐴 + 

𝐸𝐴3

2√2]
 
 
 
 
 
 
 
 
 
 
 
 

 

 

3.2 – Part B 

 There are no possible values for A1 = A2 = A and A3 = A’ to obtain Kbar = Ktriangle, 

because of the zero coefficients in different positions in both matrices. Although, to 

make them as similar as possible A would need to assume the value of 3/4 and A’ 

would need to assume the value of √2/2.  

3.3 – Part C 

 The stiffness matrices Kbar and Ktriangle are not equivalent, because the truss bar is 

a 1D structure and the Turner Triangle is a 2D structure. The truss bar only resists 
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displacement along its length and the Turner Triangle resists to displacement throughout 

its whole midplane. Therefore, their stiffness matrices cannot be the same and would 

provide different displacement fields under the same load case. 

3.4 – Part D 

 Applying the same procedure as in section 3.1 to compute Ktriangle, but considering 

𝜐 ≠ 0, the new Ktriangle takes the following form: 

𝑲𝑡𝑟𝑖𝑎𝑛𝑔𝑙𝑒  = 

=  

[
 
 
 
 
 
 
 
 
 
 
 
 

𝐸
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+

𝐸
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𝐸
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𝐸
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+

𝐸
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−
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Comparing the first Ktriangle (considering 𝜐=0) with the second Ktriangle (considering 

𝜐≠0), it is possible to point out that the arguments in the matrix considering 𝜐≠0 are greater 

(absolute values) than the arguments in the matrix considering 𝜐=0 for the same value of 

Young Modulus E. Under the same load case, the nodal displacements for the stiffness 

matrix considering 𝜐≠0 will be smaller, showing that 𝜐≠0 offers more resistance to 

displacements. Such observation is coherent, since when 𝜐=0 the strains ɛx and ɛy are 

also considered zero. Therefore, the internal energy that could be stored by the body is 

reduced and the stiffness matrix, which is derived from the internal energy, has also 

reduced arguments [3]. In such manner, under the same load case, the nodal 

displacements would be larger considering 𝜐=0. 
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4 – Discussion on Plane Stress Problem 

 The Plane Stress Problem is a simplification from a 3D problem to a 2D problem 

applied to prismatic structures. Specifically to structures which have 2 dominant 

dimensions (sufficiently large compared to the third dimension) and the midplane formed 

by the 2 dominant dimensions represent the behavior of structure along the third 

dimension (thickness). To assure such assumption, the loads must be applied on the 

midplane formed by the 2 dominant dimensions, not perpendicular to it [2]. Such 

simplification of the 3D problem provides a reduction of the computational time when FEM 

is employed to solve the problem. Another important advantage is the facilitated 

discretization of the 2D domain compared to the initial 3D domain. With a 2D domain, 

more options on how to build the mesh are available, such as an unstructured mesh with 

quadrilateral elements. Also, the mesh quality of such 2D domain can be improved when 

compared to the 3D mesh of the initial domain, because the smallest dimension 

(thickness) would not be considered. The mesh quality can be degenerated when a 

certain dimension of the element is much smaller than the others. 

5 – Discussion on Linear Triangle Element 

 The Linear Triangle element, also known as Turner Triangle, has a simple 

formulation which allows its incorporation in finite element formulation with ease. Such 

feature made the Linear Triangle very useful, especially because its geometry enables 

more efficient discretization of complex domain geometries when compared to 

quadrilateral elements. Also, the linear triangle element is more suitable for adaptive 

mesh refinement due to its geometrical features [2]. Nevertheless, the linear triangle has 

the drawback of providing constant strain and stress fields, requiring mesh refinement 

where more accurate results are needed.  
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