Computational Structural Mechanics and Dynamics

As2_extra Variational formulation

Ye Mao
mao.ye@estudiant.upc.edu

Master of Numerical methods on engineering - Universitat Politècnica de Catalunya

Assignment 2.2

A) Derive the stiffness for a tapered bar element in which the cross section area varies linearly along the element length:

$$
A=A_{i}(1-\xi)+A_{j} \xi
$$

Where A_{i} and A_{j} are the areas at the end nodes, and ξ is the natural dimensionless coordinate for a bar member. Show that yields to the same answer that of a stiffness of a constant area bar with cross section

$$
A=\mathbf{1} / \mathbf{2}\left(A_{i}+A_{j}\right)
$$

[Answer]
First, the ξ coordinate is expressed in terms of the element coordinate x :

$$
\xi=\frac{x}{l}
$$

Then the unknown variables are expressed in function of ξ

$$
\begin{gathered}
N=\left[\begin{array}{c}
N_{1}(\xi) \\
N_{2}(\xi)
\end{array}\right]=\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] \\
K a=f \\
K_{i j}^{e}=\int_{0}^{l^{e}} \frac{d N_{i}^{e}}{d x} k \frac{d N_{j}^{e}}{d x} d x=\int_{0}^{1} \frac{d N_{i}^{e}}{d \xi} \frac{E A}{l} \frac{d N_{j}^{e}}{d \xi} d \xi=\frac{E}{l} \int_{0}^{1} A_{i}(1-\xi)+A_{j} \xi \frac{d N_{i}^{e}}{d \xi} \frac{d N_{j}^{e}}{d \xi} d \xi \\
=\frac{E}{l} \int_{0}^{1}\left(A_{i}(1-\xi)+A_{j} \xi\right)\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] d \xi=\frac{E}{l} \frac{A_{i}+A_{j}}{2}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
\end{gathered}
$$

If we set $A=1 / 2\left(A_{i}+A_{j}\right)$, we obtain the

$$
K_{i j}^{e}=\frac{E}{l} A\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right]
$$

Which is the same answer that of a stiffness of a constant area bar

$$
A=1 / 2\left(A_{i}+A_{j}\right)
$$

B) Find the consistent load vector \boldsymbol{f}^{e} for a bar of constant area A subject to a force $q(x)=\rho g A(\xi)$ in which $A(\xi)$ varies according to question a) and ρ, g are constants. Check the case $A_{i}=A_{j}$, and $A_{j}=0$.
[Answer]

$$
\begin{gathered}
f=\int_{0}^{1} N \cdot q \cdot J^{-1} d \xi=\int_{0}^{1}\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] \cdot \rho g\left(A_{i}(1-\xi)+A_{j} \xi\right) \cdot l d \xi \\
=\rho g l \int_{0}^{1} A_{i}\left[\begin{array}{c}
(1-\xi)^{2} \\
\xi(1-\xi)
\end{array}\right]+A_{j}\left[\begin{array}{c}
\xi(1-\xi) \\
\xi^{2}
\end{array}\right] d \xi \\
=\rho g l\left(A_{i}\left[\begin{array}{l}
\frac{1}{3} \\
\frac{1}{6}
\end{array}\right]+A_{j}\left[\begin{array}{c}
\frac{1}{6} \\
\frac{1}{3}
\end{array}\right]\right)
\end{gathered}
$$

Case $A_{i}=A_{j}=A$,

$$
f=\rho g l A\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]=q l\left[\begin{array}{l}
\frac{1}{2} \\
\frac{1}{2}
\end{array}\right]
$$

Case $A_{j}=0$,

$$
f=\rho g l A_{i}\left[\begin{array}{c}
\frac{1}{3} \\
\frac{1}{3} \\
\frac{1}{6}
\end{array}\right]
$$

C) Find the consistent load vector f^{e} if the bar is subjected to a concentrated axial force Q at a distance $x=a$ from its left end. Consider $q(x)=\boldsymbol{Q} \delta(x-$ $a)$ in which $\delta(x-a)$ is the one-dimensional Dirac's delta function at $x=a$. Check the results for the relevant case of a.
[Answer]

$$
\begin{aligned}
F_{i}=\int_{0}^{l} q N_{i} d x & =Q \int_{0}^{l} \delta(x-a) N_{i} d x=Q \int_{0}^{l} \delta(x-a)\left[\begin{array}{c}
1-\frac{x}{l} \\
\frac{x}{l}
\end{array}\right] d x \\
& =Q \int_{0}^{1} \delta(\xi l-a)\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] l d \xi
\end{aligned}
$$

Since,

$$
\int_{-\infty}^{\infty} \delta(x-a) d x=1
$$

$$
\int_{z_{1}}^{z_{2}} f(x) \delta(x-a) d x=\left\{\begin{array}{lr}
0, & a<z_{1} \text { or } a>z_{1}, \\
f(a), \quad z_{1}<a<z_{2}, & \text { we can not let } x=a \\
\text { we can let } x=a
\end{array}\right.
$$

We apply this yield:

$$
F_{i}=Q N_{i}\left(\frac{a}{l}\right)
$$

So

$$
F=Q\left[\begin{array}{c}
1-\frac{a}{l} \\
\frac{a}{l}
\end{array}\right]
$$

While $a=0$, we have the vector with external load at Node 1. While $a=l$, we have the vector with external load at Node 2. While $a=l / 2$, we have the same force vector as a uniform distributed load

$$
q^{*}=Q \frac{x}{l}
$$

