1 Statement

2 Solution

Universitat Politecnica de Catalunya
Numerical Methods in Engineering
Computational Solid Mechanics and Dynamics

Variational Formulation Addendum

Assignment 2 extra

Eduard Gomez
February 19, 2020

Contents



Eduard Gémez February 19, 2020

1 Statement

a) Derive the stiffness matrix for a tapered bar element in which the cross section area varies linearly along
the element length:
A=(1-8&)A1+EA (1)

where A; and A, are the areas at the end nodes, and £ is the natural dimensionless coordinate for a bar member.
Show that yields to the same answer that of a stiffness of a constant area bar with cross section A = 1(A; +A4,).

b) Find the consistent load vector f¢ for a bar of constant area A subject to a force ¢ = pgA(¢) which
A(€) varies according to question a) and p, g are constants. Check the cases A; = As, and A, = 0.

¢) Find the consistent load vector f¢ if the bar is subjected to a concentrated axial force Q at a distance z = a
from its left end. Consider ¢(z) = Qd(x — a) in which §(z — a) is the one-dimensional Dirac delta function at
x = a. Check the results for the relevant cases of a.

2 Solution
We'll start by stating the balance on a slice of width Az of the element:
—01A1 +02A2 +qAz =0 (2)

Replacing for an infinitesimal slice:

0(cA)
or

—aA—i—(aA—l— dm)+qdaz=0 3

Hence:

. . . du
Including the constitutive equation o = Ed—:
X

du dA d2u

Hence we reach the strong form of the problem:
_EAi_Eiizq (5)

We’ll multiply the test function and integrate:

—E/ A—vdm E/ d—u%vdx—/ qudz (6)

1

Using the chain rule on the first term:

—E/ A—vdw-—E/ A( )d +E/ Ad—Ud—vd 7
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Using the chain rule again, this time on the first term of the right hand side, we obtain:

T2 d2y 2 d ¥z dA du du dv
- F A de =—-F Av— | d E —uv—dr+ FE A——dzx 8
/Il a2’ T /I dm( ”dx) v /x & d T /z dz dz ®)
Using the divergence theorem in 1D, also knwon as Gauss’ theorem:
T2 d2y dul™ r2 dA du du dv
—F A—vdx = — |Av— E de + FE A——dx
/I1 2’ " { UdacLl + /ml dz ' dx + Ll dz dx ©)
Putting this back in equation 6:
dul™? vz dA du du dv 2 du dA vz
— |Av— E —v—dz+ F A——dx E — —uvdr = d 10
( [deLl-l— /JC1 dmd + /11 I dx ) /wlddvx /IIQUx (10)
The second and last terms on the left hand side cancel out. Rearranging it it becomes:
2 du dv vz du]™
E A——dzx = d Av— 11
/$ dr dx /Z1 qudx+ [ vdle (b

Since this is for an arbitrary element, the flux is not prescribed. We reach our last step before introducing the

shape functions.
E/ Ad—u@d / qudx (12)

We will now make the following replacements:

u@) =S Nyulay) =Y ) wl) = M) a3

where p is the order of discretization. Replacing yields:
(E /I1 dcg dé\g/; dx > = /:2 qN; dx ,7=1,2...p (14)

The previous equation can be expressed in matrix form:
KU =F (15)

where
K, dN dN 16
U, = u(a:l 17
= [ (18)
E2)

Since A = A(¢), for £ = [0, 1], we have to do a change of variables. We’ll work in the ¢ space since it works
similar to isoparametric space. The matrices become:

E [! dN; dN;
K;; = E/o (1 =&)AL+ EAD b d7§j d¢ (19)
Ui = u(z;) (20)
1
F,=h N; d 21
/0 qN; d§ @n
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We'll particularize for linear elements:

Then we get, for the stiffness matrix:

. E A+ A |1 —1
h 2
If we define the average area as A:

AR

h 1 1

which is the same as a constant section bar of area A. This solves part(a).

In the force vector we must substitute g(x) = pgA(§). After integrating it becomes:

r="£

pgh [24; + A
6 [A1+ 242

Of course for A; = Ay = A we recover the same force vector we had for constant area elements:

_pghA 1] _qh |1
F==3 _1]_2{1]

And in the case A; # Ay = 0 we retrieve:

This solves part(b).

If, on the other hand, we have it so ¢(z) = Qd(x — a), where a € [z, x2]; the integral looks like:
F,=0Q /952 N;é(x — a)dx
We must use the following property:
/Z2 f@)(xz —a)de = f(a) <= 21 <a< 29

Applying this yields:

a— X1

)

rof' il

F; = QNy(

Therefore:

(22)

(23)

(24

(25)

(26)

(27)

(28)

(29

(30)

(3D

We can see that for ¢ = 0 we simply have the vector with an external load at the first node. For a = h we have
the load at the second load. Finally, for a = % we have the same force vector as a uniformly distributed load

g = %:r This solves part (c).
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