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1 Statement

a) Derive the stiffness matrix for a tapered bar element in which the cross section area varies linearly along
the element length:

A = (1− ξ1)A1 + ξA2 (1)

where A1 and A2 are the areas at the end nodes, and ξ is the natural dimensionless coordinate for a bar member.
Show that yields to the same answer that of a stiffness of a constant area bar with cross section A = 1

2 (A1+A2).

b) Find the consistent load vector fe for a bar of constant area A subject to a force q = ρgA(ξ) which
A(ξ) varies according to question a) and ρ, g are constants. Check the cases A1 = A2, andA2 = 0.

c) Find the consistent load vector fe if the bar is subjected to a concentrated axial force Q at a distance x = a
from its left end. Consider q(x) = Qδ(x− a) in which δ(x− a) is the one-dimensional Dirac delta function at
x = a. Check the results for the relevant cases of a.

2 Solution

We’ll start by stating the balance on a slice of width ∆x of the element:

− σ1A1 + σ2A2 + q∆x = 0 (2)

Replacing for an infinitesimal slice:

− σA+

(
σA+

∂(σA)

∂x
dx

)
+ q dx = 0 (3)

Hence:
d(σA)

dx
+ q = 0

σ
dA

dx
+A

dσ

dx
+ q = 0

Including the constitutive equation σ = E
du

dx
:

E
du

dx

dA

dx
+ EA

d2u

dx2
+ q = 0 (4)

Hence we reach the strong form of the problem:

− EAd
2u

dx2
− Edu

dx

dA

dx
= q (5)

We’ll multiply the test function and integrate:

− E
∫ x2

x1

A
d2u

dx2
v dx− E

∫ x2

x1

du

dx

dA

dx
v dx =

∫ x2

x1

qv dx (6)

Using the chain rule on the first term:

− E
∫ x2

x1

A
d2u

dx2
v dx = −E

∫ x2

x1

A
d

dx

(
v
du

dx

)
dx+ E

∫ x2

x1

A
du

dx

dv

dx
dx (7)
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Using the chain rule again, this time on the first term of the right hand side, we obtain:

− E
∫ x2

x1

A
d2u

dx2
v dx = −E

∫ x2

x1

d

dx

(
Av

du

dx

)
dx+ E

∫ x2

x1

dA

dx
v
du

dx
dx+ E

∫ x2

x1

A
du

dx

dv

dx
dx (8)

Using the divergence theorem in 1D, also knwon as Gauss’ theorem:

− E
∫ x2

x1

A
d2u

dx2
v dx = −

[
Av

du

dx

]x2

x1

+ E

∫ x2

x1

dA

dx
v
du

dx
dx+ E

∫ x2

x1

A
du

dx

dv

dx
dx (9)

Putting this back in equation 6:(
−
[
Av

du

dx

]x2

x1

+ E

∫ x2

x1

dA

dx
v
du

dx
dx+ E

∫ x2

x1

A
du

dx

dv

dx
dx

)
− E

∫ x2

x1

du

dx

dA

dx
v dx =

∫ x2

x1

qv dx (10)

The second and last terms on the left hand side cancel out. Rearranging it it becomes:

E

∫ x2

x1

A
du

dx

dv

dx
dx =

∫ x2

x1

qv dx+

[
Av

du

dx

]x2

x1

(11)

Since this is for an arbitrary element, the flux is not prescribed. We reach our last step before introducing the
shape functions.

E

∫ x2

x1

A
du

dx

dv

dx
dx =

∫ x2

x1

qv dx (12)

We will now make the following replacements:

u(x) =
∑p

j=1Nj(x)u(xj)
du

dx
=
∑p

j=1

dNj

dx
u(xj) vi(x) = Ni(x) (13)

where p is the order of discretization. Replacing yields:(
E

∫ x2

x1

A
dNi

dx

dNj

dx
dx

)
uj =

∫ x2

x1

qNi dx i, j = 1, 2...p (14)

The previous equation can be expressed in matrix form:

KKKUUU = FFF (15)

where

Kij = E

∫ x2

x1

A
dNi

dx

dNj

dx
dx (16)

Ui = u(xi) (17)

Fi =

∫ x2

x1

qNi dx (18)

Since A = A(ξ), for ξ = [0, 1], we have to do a change of variables. We’ll work in the ξ space since it works
similar to isoparametric space. The matrices become:

Kij =
E

h

∫ 1

0

[(1− ξ1)A1 + ξA2]
dNi

dξ

dNj

dξ
dξ (19)

Ui = u(xi) (20)

Fi = h

∫ 1

0

qNi dξ (21)
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We’ll particularize for linear elements:

N1(ξ) = 1− ξ N2(ξ) = ξ (22)

Then we get, for the stiffness matrix:

K =
E

h

A1 +A2

2

[
1 −1
−1 1

]
(23)

If we define the average area as Ā:

K =
EĀ

h

[
1 −1
−1 1

]
(24)

which is the same as a constant section bar of area Ā. This solves part(a).

In the force vector we must substitute q(x) = ρgA(ξ). After integrating it becomes:

F =
ρgh

6

[
2A1 +A2

A1 + 2A2

]
(25)

Of course for A1 = A2 = A we recover the same force vector we had for constant area elements:

F =
ρghA

2

[
1
1

]
=
qh

2

[
1
1

]
(26)

And in the case A1 6= A2 = 0 we retrieve:

F =
ρghA1

6

[
2
1

]
(27)

This solves part(b).

If, on the other hand, we have it so q(x) = Qδ(x− a), where a ∈ [x1, x2]; the integral looks like:

Fi = Q

∫ x2

x1

Niδ(x− a)dx (28)

We must use the following property:∫ z2

z1

f(x)δ(x− a)dx = f(a) ⇐⇒ z1 < a < z2 (29)

Applying this yields:

Fi = QNi(
a− x1
h

) (30)

Therefore:

F = Q

[
1− a/h
a/h

]
(31)

We can see that for a = 0 we simply have the vector with an external load at the first node. For a = h we have
the load at the second load. Finally, for a = h

2 we have the same force vector as a uniformly distributed load
q∗ = Q

h x. This solves part (c).
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