Universitat Politècnica de Catalunya
Numerical Methods in Engineering Computational Solid Mechanics and Dynamics

Variational Formulation Addendum

Assignment 2 extra

Eduard Gómez
February 19, 2020

Contents

1 Statement

a) Derive the stiffness matrix for a tapered bar element in which the cross section area varies linearly along the element length:

$$
\begin{equation*}
A=\left(1-\xi_{1}\right) A_{1}+\xi A_{2} \tag{1}
\end{equation*}
$$

where A_{1} and A_{2} are the areas at the end nodes, and ξ is the natural dimensionless coordinate for a bar member. Show that yields to the same answer that of a stiffness of a constant area bar with cross section $A=\frac{1}{2}\left(A_{1}+A_{2}\right)$.
b) Find the consistent load vector f^{e} for a bar of constant area A subject to a force $q=\rho g A(\xi)$ which $A(\xi)$ varies according to question a) and ρ, g are constants. Check the cases $A_{1}=A_{2}$, and $A_{2}=0$.
c) Find the consistent load vector f^{e} if the bar is subjected to a concentrated axial force Q at a distance $x=a$ from its left end. Consider $q(x)=Q \delta(x-a)$ in which $\delta(x-a)$ is the one-dimensional Dirac delta function at $x=a$. Check the results for the relevant cases of a.

2 Solution

We'll start by stating the balance on a slice of width Δx of the element:

$$
\begin{equation*}
-\sigma_{1} A_{1}+\sigma_{2} A_{2}+q \Delta x=0 \tag{2}
\end{equation*}
$$

Replacing for an infinitesimal slice:

$$
\begin{equation*}
-\sigma A+\left(\sigma A+\frac{\partial(\sigma A)}{\partial x} d x\right)+q d x=0 \tag{3}
\end{equation*}
$$

Hence:

$$
\begin{gathered}
\frac{d(\sigma A)}{d x}+q=0 \\
\sigma \frac{d A}{d x}+A \frac{d \sigma}{d x}+q=0
\end{gathered}
$$

Including the constitutive equation $\sigma=E \frac{d u}{d x}$:

$$
\begin{equation*}
E \frac{d u}{d x} \frac{d A}{d x}+E A \frac{d^{2} u}{d x^{2}}+q=0 \tag{4}
\end{equation*}
$$

Hence we reach the strong form of the problem:

$$
\begin{equation*}
-E A \frac{d^{2} u}{d x^{2}}-E \frac{d u}{d x} \frac{d A}{d x}=q \tag{5}
\end{equation*}
$$

We'll multiply the test function and integrate:

$$
\begin{equation*}
-E \int_{x_{1}}^{x_{2}} A \frac{d^{2} u}{d x^{2}} v d x-E \int_{x_{1}}^{x_{2}} \frac{d u}{d x} \frac{d A}{d x} v d x=\int_{x_{1}}^{x_{2}} q v d x \tag{6}
\end{equation*}
$$

Using the chain rule on the first term:

$$
\begin{equation*}
-E \int_{x_{1}}^{x_{2}} A \frac{d^{2} u}{d x^{2}} v d x=-E \int_{x_{1}}^{x_{2}} A \frac{d}{d x}\left(v \frac{d u}{d x}\right) d x+E \int_{x_{1}}^{x_{2}} A \frac{d u}{d x} \frac{d v}{d x} d x \tag{7}
\end{equation*}
$$

Using the chain rule again, this time on the first term of the right hand side, we obtain:

$$
\begin{equation*}
-E \int_{x_{1}}^{x_{2}} A \frac{d^{2} u}{d x^{2}} v d x=-E \int_{x_{1}}^{x_{2}} \frac{d}{d x}\left(A v \frac{d u}{d x}\right) d x+E \int_{x_{1}}^{x_{2}} \frac{d A}{d x} v \frac{d u}{d x} d x+E \int_{x_{1}}^{x_{2}} A \frac{d u}{d x} \frac{d v}{d x} d x \tag{8}
\end{equation*}
$$

Using the divergence theorem in 1D, also knwon as Gauss' theorem:

$$
\begin{equation*}
-E \int_{x_{1}}^{x_{2}} A \frac{d^{2} u}{d x^{2}} v d x=-\left[A v \frac{d u}{d x}\right]_{x_{1}}^{x_{2}}+E \int_{x_{1}}^{x_{2}} \frac{d A}{d x} v \frac{d u}{d x} d x+E \int_{x_{1}}^{x_{2}} A \frac{d u}{d x} \frac{d v}{d x} d x \tag{9}
\end{equation*}
$$

Putting this back in equation 6:

$$
\begin{equation*}
\left(-\left[A v \frac{d u}{d x}\right]_{x_{1}}^{x_{2}}+E \int_{x_{1}}^{x_{2}} \frac{d A}{d x} v \frac{d u}{d x} d x+E \int_{x_{1}}^{x_{2}} A \frac{d u}{d x} \frac{d v}{d x} d x\right)-E \int_{x_{1}}^{x_{2}} \frac{d u}{d x} \frac{d A}{d x} v d x=\int_{x_{1}}^{x_{2}} q v d x \tag{10}
\end{equation*}
$$

The second and last terms on the left hand side cancel out. Rearranging it it becomes:

$$
\begin{equation*}
E \int_{x_{1}}^{x_{2}} A \frac{d u}{d x} \frac{d v}{d x} d x=\int_{x_{1}}^{x_{2}} q v d x+\left[A v \frac{d u}{d x}\right]_{x_{1}}^{x_{2}} \tag{11}
\end{equation*}
$$

Since this is for an arbitrary element, the flux is not prescribed. We reach our last step before introducing the shape functions.

$$
\begin{equation*}
E \int_{x_{1}}^{x_{2}} A \frac{d u}{d x} \frac{d v}{d x} d x=\int_{x_{1}}^{x_{2}} q v d x \tag{12}
\end{equation*}
$$

We will now make the following replacements:

$$
\begin{equation*}
u(x)=\sum_{j=1}^{p} N_{j}(x) u\left(x_{j}\right) \quad \frac{d u}{d x}=\sum_{j=1}^{p} \frac{d N_{j}}{d x} u\left(x_{j}\right) \quad v_{i}(x)=N_{i}(x) \tag{13}
\end{equation*}
$$

where p is the order of discretization. Replacing yields:

$$
\begin{equation*}
\left(E \int_{x_{1}}^{x_{2}} A \frac{d N_{i}}{d x} \frac{d N_{j}}{d x} d x\right) u_{j}=\int_{x_{1}}^{x_{2}} q N_{i} d x \quad i, j=1,2 \ldots p \tag{14}
\end{equation*}
$$

The previous equation can be expressed in matrix form:

$$
\begin{equation*}
K U=F \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
K_{i j} & =E \int_{x_{1}}^{x_{2}} A \frac{d N_{i}}{d x} \frac{d N_{j}}{d x} d x \tag{16}\\
U_{i} & =u\left(x_{i}\right) \tag{17}\\
F_{i} & =\int_{x_{1}}^{x_{2}} q N_{i} d x \tag{18}
\end{align*}
$$

Since $A=A(\xi)$, for $\xi=[0,1]$, we have to do a change of variables. We'll work in the ξ space since it works similar to isoparametric space. The matrices become:

$$
\begin{align*}
K_{i j} & =\frac{E}{h} \int_{0}^{1}\left[\left(1-\xi_{1}\right) A_{1}+\xi A_{2}\right] \frac{d N_{i}}{d \xi} \frac{d N_{j}}{d \xi} d \xi \tag{19}\\
U_{i} & =u\left(x_{i}\right) \tag{20}\\
F_{i} & =h \int_{0}^{1} q N_{i} d \xi \tag{21}
\end{align*}
$$

We'll particularize for linear elements:

$$
\begin{equation*}
N_{1}(\xi)=1-\xi \quad N_{2}(\xi)=\xi \tag{22}
\end{equation*}
$$

Then we get, for the stiffness matrix:

$$
K=\frac{E}{h} \frac{A_{1}+A_{2}}{2}\left[\begin{array}{cc}
1 & -1 \tag{23}\\
-1 & 1
\end{array}\right]
$$

If we define the average area as \bar{A} :

$$
K=\frac{E \bar{A}}{h}\left[\begin{array}{rr}
1 & -1 \tag{24}\\
-1 & 1
\end{array}\right]
$$

which is the same as a constant section bar of area \bar{A}. This solves part(a).
In the force vector we must substitute $q(x)=\rho g A(\xi)$. After integrating it becomes:

$$
F=\frac{\rho g h}{6}\left[\begin{array}{l}
2 A_{1}+A_{2} \tag{25}\\
A_{1}+2 A_{2}
\end{array}\right]
$$

Of course for $A_{1}=A_{2}=A$ we recover the same force vector we had for constant area elements:

$$
F=\frac{\rho g h A}{2}\left[\begin{array}{l}
1 \tag{26}\\
1
\end{array}\right]=\frac{q h}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]
$$

And in the case $A_{1} \neq A_{2}=0$ we retrieve:

$$
F=\frac{\rho g h A_{1}}{6}\left[\begin{array}{l}
2 \tag{27}\\
1
\end{array}\right]
$$

This solves part(b).
If, on the other hand, we have it so $q(x)=Q \delta(x-a)$, where $a \in\left[x_{1}, x_{2}\right]$; the integral looks like:

$$
\begin{equation*}
F_{i}=Q \int_{x_{1}}^{x_{2}} N_{i} \delta(x-a) d x \tag{28}
\end{equation*}
$$

We must use the following property:

$$
\begin{equation*}
\int_{z_{1}}^{z_{2}} f(x) \delta(x-a) d x=f(a) \Longleftrightarrow z_{1}<a<z_{2} \tag{29}
\end{equation*}
$$

Applying this yields:

$$
\begin{equation*}
F_{i}=Q N_{i}\left(\frac{a-x_{1}}{h}\right) \tag{30}
\end{equation*}
$$

Therefore:

$$
F=Q\left[\begin{array}{c}
1-a / h \tag{31}\\
a / h
\end{array}\right]
$$

We can see that for $a=0$ we simply have the vector with an external load at the first node. For $a=h$ we have the load at the second load. Finally, for $a=\frac{h}{2}$ we have the same force vector as a uniformly distributed load $q^{*}=\frac{Q}{h} x$. This solves part (c).

