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Assignment 2.1
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The graphics below shows the Symmetric Lines (SL) and Anti-Symmetric Line (ASL) for each proposed
case.

(a) (b) (c)

Figure 1: Symmetric and Anti-Symmetric lines for cases (a),(b) and (c).
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(d) (e) (f)

Figure 2: Symmetric and Anti-Symmetric lines for cases (d),(e) and (f).
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The graphics below shows the geometric simplification and appropriated boundary conditions in the mesh
nodes in order to explore the symmetry and antisymmetry of each case.

(a) (b) (c)

(d) (e) (f)

Figure 3: Simplified FEM models.

Notice that for cases (e) and (f), Figure (3) (e) and (f) respectively, a fixed support is imposed in a DOF
away from the application force (at ”infinity” position). This ”infinity” position is a position such that,
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for the analysis purposes, the point load effect is not considerable. The case (b) can be further simplified
considering its antisymmetric line and implying supports in the DOF’s at this line such that the displacement
along the line is zero (as made for case (f), in Figure (3) (f)). The result is shown in Figure (4).

Figure 4: Further simplification of case (b).

Assignment 2.2

The regions of the geometry, in Figure (5), that should receive some care during meshing, due to high stress
gradients, in order to guarantee reasonable results from a Finite Element Analysis are as follows:

• Points D, N and I : Highly Concentrated loads (i.e., point loads).

• Points B, F, M and J: Entrant Corners.

Figure 5: In plane bent plate

Assignment 2.3

The external work at the element can be written as:

W (e) =

∫ l

0

u(e)q(x)dx =

∫ l

0

Nu(e)q(x)dx =

∫ l

0

q(x)NTu(e)Tdx = u(e)T
∫ l

0

q(x)NTdx (1)

Writing the shape function vector (NT ) and the axial force (q(x) = ρω2Ax) as functions of the natural
coordinate ξ we have:

W (e) = u(e)T
∫ 1

0

q(ξ)N(ξ)
T
ldξ = u(e)T

∫ 1

0

ρω2A(ξ)x(ξ)

[
1 − ξ
ξ

]
ldξ (2)

The integral above gives the consistent nodal forces vector. By the definition of A ((1 − ξ)Ai + ξAj) and x
in terms of ξ (x = x1 + lξ, with x1 = 0 in this case), the vectorial integral for f (e) above becomes.

f (e) =

∫ 1

0

ρω2[(1−ξ)Ai+ξAj]lξ

[
1 − ξ
ξ

]
ldξ = ρω2l2

∫ 1

0

[
ξ(1 − ξ)2Ai + ξ2(1 − ξ)Aj

ξ2(1 − ξ)Ai + ξ3Aj

]
dξ (3)
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The first component of the vector f (e) is computed as follows:

f
(e)
1 = ρω2l2

∫ 1

0

[
ξ(1 − ξ)2Ai + ξ2(1 − ξ)Aj

]
dξ

f
(e)
1 = ρω2l2

[
(
ξ3

4
− 2ξ3

3
+
ξ2

2
)Ai + (

ξ3

3
− ξ4

4
)Aj

]∣∣∣∣∣
1

0

= ρω2l2
[
(
1

4
− 2

3
+

1

2
)Ai + (

1

3
− 1

4
)Aj

]

f
(e)
1 = ρ

ω2l2

12
(Ai +Aj) (4)

The second component of the vector f (e) is computed as follows:

f
(e)
2 = ρω2l2

∫ 1

0

[
ξ2(1 − ξ)Ai + ξ3Aj

]
dξ

f
(e)
2 = ρω2l2

[
(
ξ3

3
− ξ4

4
)Ai +

ξ4

4
Aj

]∣∣∣∣∣
1

0

= ρω2l2
[
(
1

3
− 1

4
)Ai +

1

4
Aj

]

f
(e)
2 = ρ

ω2l2

12
(Ai + 3Aj) (5)

Thus, the consistent nodal forces vector becomes:

f (e) = ρ
ω2l2

12

[
Ai +Aj

Ai + 3Aj

]
(6)

When Ai = Aj = A, the consistent nodal forces vector becomes:

f (e) = ρ
ω2l2

6
A

[
1
2

]
(7)

This result provides nodal equilibrium in both nodes. For example, in the case where the first DOF has zero

displacement(u1 = 0), u2 = ρω2l3

3E , thus the internal force F (constant for linear elements) is F = ρω2l2

3 A.

The reaction for at node one is the integral of the load q(x) given by R = ρω2l2

2 A. Thus, free body diagram
for the 1D- FEM element is as follows.

Figure 6: Nodal forces equilibrium.
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