
UNIVERSITAT POLITÈCNICA DE CATALUNYA, BARCELONA

MSC. COMPUTATIONAL MECHANICS ERASMUS MUNDUS

ASSIGNMENT 2: FEM MODELLING AND

VARIATIONAL FORMULATION

Computational Structural Mechanics
& Dynamics

Author:
Nikhil Dave

Date: February 16, 2018



CSMD - Assignment 2: FEM Modelling & Variational Formulation Nikhil Dave

Assignment 2.1

On “FEM Modelling: Introduction”:

1. Identify the symmetry and antisymmetry lines in the two-dimensional problems
illustrated in the figure. They are:

(a) a circular disk under two diametrically opposite point forces (the famous “Brazil-
ian test” for concrete).

(b) the same disk under two diametrically opposite force pairs.

(c) a clamped semiannulus under a force pair oriented as shown.

(d) a stretched rectangular plate with a central circular hole.

(e) and (f) are half-planes under concentrated loads.

Figure 1: Problems for assignment 2.1
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Solution: The symmetry and antisymmetry lines are identified for the given two-
dimensional problems. Figure 2 shows the symmetry (dotted blue lines) and anti-
symmetry (dotted green lines) for each given problem. We observe that symmetry
exists in problems (a), (d) and (e) while the antisymmetry could be utilised in prob-
lems (c) and (f). Problem (b) gives us an option to exploit either the symmetry or
antisymmetry property of the circular disk under two diametrically opposite force
pairs.

Symmetry line

Antisymmetry line

Figure 2: Symmetry and antisymmetry lines in the two-dimensional problems
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2. Having identified those symmetry/antisymmetry lines, state whether it is possible
to cut the complete structure to one half or one quarter before laying out a finite
element mesh. Then draw a coarse FE mesh indicating, with rollers or fixed supports,
which kind of displacement BCs you would specify on the symmetry or antisymmetry
lines.

Solution: It is very useful to exploit the symmetry or antisymmetry of a problem
for analysing the structural system. With proper specification of the boundary con-
ditions and loading, the structures given in each problem could be cut along the
symmetry and antisymmetry lines and a finite element mesh can be generated to
solve half or quarter model as shown in Figures 3-8. The meshes shown in blue and
green are laid out using the symmetry and antisymmetry of the problem respectively.
The orientation of the roller or fixed supports along the symmetry and antisymmetry
lines are recognised by the displacement patterns of the structure. This approach
reduces the size of the model leading to reduction in computational cost.

Figure 3: Half and quarter model for problem (a) using symmetry

Figure 4: Half and quarter model for problem (b) using symmetry
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Figure 5: Half and quarter model for problem (b) using antisymmetry

Figure 6: Half model for problem (c) using antisymmetry
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Figure 7: Half and quarter model for problem (d) using symmetry

Figure 8: Half models for problem (e) using symmetry and for problem (f) using anti-
symmetry
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Assignment 2.2

On “FEM Modelling: Introduction”:

1. The plate structure shown in the figure is loaded and deforms in the plane of the
paper. The applied load at D and the supports at I and N extend over a fairly narrow
area. List what you think are the likely “trouble spots” that would require a locally
finer finite element mesh to capture high stress gradients. Identify those spots by its
letter and a reason.

Figure 9: Inplane bent plate

Solution: The ‘trouble spots’ in the plate structure shown in figure 9 are expected
in the region of high stress or strain gradients i.e. where a sudden variation of these
quantities could be anticipated. In order to capture these changes reasonably well,
we need to refine the mesh locally at these regions. A few situations which require
local mesh refinement are:

• Around cracks and cutouts.

• Near entrant corners and sharp curved edges.

• In the neighbourhood of concentrated point loads and supports/reaction forces.

• At sharp contact areas, joints or welds.

• Surrounding the region where the thickness, cross-section area or material
properties changes within the structure.
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Keeping the above situations in mind, Table 1 presents the trouble spots in the given
plate structure.

Trouble spots Situation

D Concentrated point load
N, I Supports/reaction forces

B, F, J, M Entrant corners

Table 1: Trouble spots and the related situation in the given plate structure

In the regions away from these spots, we could use a coarser mesh which can jus-
tifiably represent the problem i.e. geometry, loads and the support conditions. By
doing this, we could save the computational cost without compromising the solution
of the problem.

Assignment 2.3

On “Variational Formulation”:

1. A tapered bar element of length l and areas Ai and Aj with A interpolated as

A = Ai(1− ξ) +Ajξ

and constant density ρ rotates on a plane at uniform angular velocity ω (rad/sec)
about node i. Taking axis x along the rotating bar with origin at node i, the cen-
trifugal axial force is q(x) = ρAω2x along the length in which x is the longitudinal
coordinate x = xe.

Find the consistent node forces as functions of ρ,Ai ,Aj ,ω and l, and specialise the
result to the prismatic bar A = Ai = Aj .

Solution: The consistent node force vector f e is given as,

f e =
∫ x2

x1

q

[
1− ξ
ξ

]
dx =

∫ 1

0
q

[
1− ξ
ξ

]
l dξ

where, ξ = (x − x1) / l and considering only one bar element x1 = 0 −→ x = ξ l

Using the given centrifugal axial force q(x), we get,

f e =
∫ 1

0
ρAω2x

[
1− ξ
ξ

]
l dξ

Now, utilising the area interpolation for the tapered bar element, we have,

f e =
∫ 1

0
ρ(Ai(1− ξ) +Ajξ)ω2x

[
1− ξ
ξ

]
l dξ
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We know x = ξ l, therefore we get the consistent node force vector as,

f e = ρω2l2
∫ 1

0
(Ai(1− ξ) +Ajξ) ξ

[
1− ξ
ξ

]
dξ

Hence, we have the consistent node force component as,

f e1 = ρω2l2
∫ 1

0
Aiξ(1− ξ)2 +Ajξ2(1− ξ) dξ

f e1 = ρω2l2
∫ 1

0
Ai(ξ + ξ

3 − 2ξ2) +Aj(ξ2 − ξ3) dξ

f e1 = ρω2l2
Ai(ξ22 +

ξ4

4
− 2ξ

3

3
) +Aj(

ξ3

3
− ξ

4

4
)

1
0

f e1 = ρω2l2
[
Ai(

1
2
+
1
4
− 2
3
) +Aj(

1
3
− 1
4
)
]

f e1 = ρω2l2
[Ai
12

+
Aj
12

]
Similarly, the second component is given as,

f e2 = ρω2l2
∫ 1

0
Aiξ

2(1− ξ) +Ajξ3 dξ

f e2 = ρω2l2
∫ 1

0
Ai(ξ

2 − ξ3) +Ajξ3 dξ

f e2 = ρω2l2
Ai(ξ33 − ξ44 ) +Aj

ξ4

4

1
0

f e2 = ρω2l2
[
Ai(

1
3
− 1
4
) +Aj(

1
4
)
]

f e2 = ρω2l2
[Ai
12

+
Aj
4

]
Therefore,

f e =
ρω2l2

12

[
Ai +Aj
Ai +3Aj

]
For the special case of a prismatic bar, A = Ai = Aj , we get,

f e =
ρAω2l2
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[
1
2

]
It is interesting to note that due to the specification of centrifugal axial force q(x) as
a linear function of x, the force on node 2 is double the force on node 1.
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