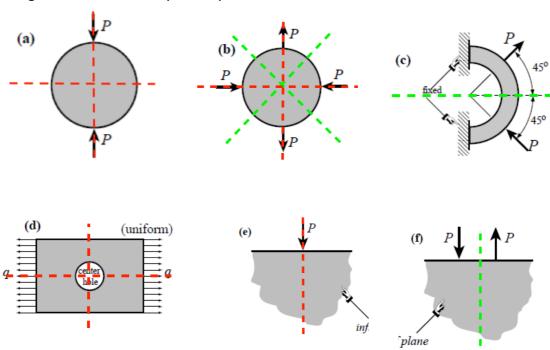
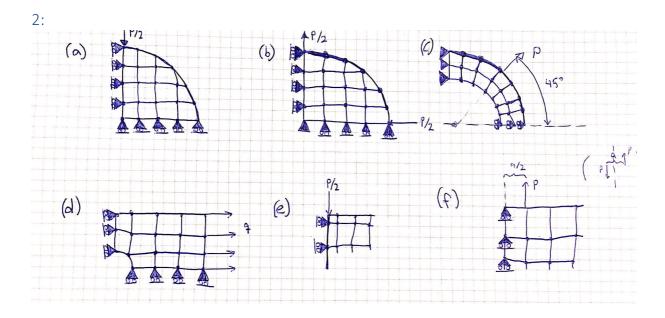
As2-Benjaminsson

2.1

1:

Below the symmetry and anti symmetri lines are shown. Antisymmetry lines are presented with green color and the symmetry lines with red color.





2.2

There are two groups of trouble spots in the example that would need a more fine mesh. At point D there is a concentrated load with sharp contact area and at N, I there are concentrated reaction points. At points B,M,J,F there are entrant corners and abrupt thickness changes.

2.3

Given:

$$l, \rho, \omega$$

$$A = A_i(1 - \xi) + A_j \xi$$

$$q(x) = \rho A \omega^2 x$$

Prismatic case: $A = A_i = A_i$

Solution:

With the nodal force in the x-direction we have

$$\begin{split} f_{ext} &= \int_{0}^{1} q \begin{bmatrix} 1 - \xi \\ \xi \end{bmatrix} l d\xi = \int_{0}^{1} \rho \left[A_{i} (1 - \xi) + A_{j} \xi \right] \omega^{2} x \begin{bmatrix} 1 - \xi \\ \xi \end{bmatrix} l d\xi = \left\{ x_{1} = 0 \to \xi = \frac{x}{l} \right\} = \\ &= \int_{0}^{1} \rho \left[A_{i} (1 - \xi) + A_{j} \xi \right] \omega^{2} \xi \begin{bmatrix} 1 - \xi \\ \xi \end{bmatrix} l^{2} d\xi = \\ &= \rho l^{2} \omega^{2} \int_{0}^{1} A_{i} \left(\begin{bmatrix} \xi - \xi^{2} \\ \xi^{2} \end{bmatrix} - \begin{bmatrix} \xi^{2} - \xi^{3} \\ \xi^{3} \end{bmatrix} \right) + A_{j} \begin{bmatrix} \xi^{2} - \xi^{3} \\ \xi^{3} \end{bmatrix} d\xi = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\begin{bmatrix} \frac{\xi^{2}}{2} - \frac{\xi^{3}}{3} \\ \frac{\xi^{3}}{3} \end{bmatrix} - \begin{bmatrix} \frac{\xi^{3}}{3} - \frac{\xi^{4}}{4} \\ \frac{\xi^{4}}{4} \end{bmatrix} \right) + A_{j} \begin{bmatrix} \frac{\xi^{3}}{3} - \frac{\xi^{4}}{4} \\ \frac{\xi^{4}}{4} \end{bmatrix} \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\begin{bmatrix} \frac{1}{2} - \frac{1}{3} \\ \frac{1}{3} \end{bmatrix} - \begin{bmatrix} \frac{1}{3} - \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} \right) + A_{j} \begin{bmatrix} \frac{1}{3} - \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} \right] = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} - \frac{1}{4} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} - \frac{1}{4} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} - \frac{1}{4} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} - \frac{1}{4} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} - \frac{1}{4} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} - \frac{1}{4} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{3} \right) + A_{j} \left(\frac{1}{12} - \frac{1}{4} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{12} - \frac{1}{12} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{12} - \frac{1}{12} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{12} - \frac{1}{12} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{12} - \frac{1}{12} - \frac{1}{12} \right) \right]_{0}^{1} = \\ &= \rho l^{2} \omega^{2} \left[A_{i} \left(\frac{1}{12} - \frac{1}{12} - \frac{1}{12} - \frac{1}{12} \right) \right]_{0}^{1} = \\ &= \rho l^{2$$

For a prismatic bar with $A=A_i=A_j$ the consistent nodal force vector becomes

$$f_{ext} = \rho l^2 \omega^2 A \begin{bmatrix} 1/6 \\ 1/3 \end{bmatrix}.$$