PRADEEP KUMAR BAL
(1)
L.O.S. \rightarrow Line of symmetry
L.O.AS. \rightarrow Line of antisymmetry
(a)
(b)

(C)

(Anterymmetry)
(9)
q

(e)
(b)

20

It is possible to cut the complete structure to both one halt and one quarter.

Ne Halt:-
(a) It can be cut along x axis
(b) It can be cot along y axis

$\rightarrow N O$ Displacement in the y direction for any point on the x Axis.
\rightarrow TO preclude horizontal rigid body motion node ' A ' is constrained in the x, y directions

\rightarrow No displacementin the x direction fore any point on the x axis
\rightarrow TO preclude vertical rigid body motion node A^{\prime} is constrained in they, directions. dire $\left(i 0^{n}\right)$
one ouarctery:-

As the structure is doubly symmetric in both geometry and Loading, gtisevident that no y displacements are possible fore points on the x amis and no x displacements ane possible fore any points on the y axis.
(b)

It is possible to cot the complete structure to both one half and one quarter.
the Halt

\rightarrow NO y displacements of the points on the x axis.
\rightarrow TO preclude Horizontal rigid body motion node ' A ' is constrained in the x direction.

one focerth
\rightarrow Antre structure ${ }^{\prime \prime}$ ' doubly symmetric in both geometry and Loading, ot i's evident that no y displacements are possible tore points on the x axis and NO x displacements are possible bore any points onthe y amis.

It also canoe cat 10 both one halt and one quantere along the line of Anti-Aymmeries. one quarter

C_{2-2}^{1-1} are antisymmetric 2-2 Lives

The displacement of the nodes which are on $1-1$ are zero along 1-1; the displacement of the nodes which ane on 2-2 ane zero along 2-2.
one halt
The displacement of nodes on 2-2 ane zeno along 2-2.
The node A is constrained L.O.AS. in bother and 2-2
(c) prevent rigid loodymotion.
2. (c)

It is possible to cat the structure to one halt along the line of antinymmetry. (x avis)

file hats
 (LOOt Antinymmeny)
\rightarrow NO displacements in Both the x and x \rightarrow No displacements in both the x and x (fined points on the y amis. (portion)
axis for the points on the avi's pocits on the \rightarrow NO x displatisymmetry $\leftarrow x$ aw's)
lUne of antisymmerny $(x$ ain) of the structural.
gt is possible to cat the complete
structure to both one halt and one quarter.
ONE HALF:-

Along L.O.S:-1

The y displacements of the nodes of the structure on the x axis are zero. To prevent rigid body notion in the x direction, both the x, y displacements of the node A are constrained-

Along L.O.S:-2
\rightarrow The x displacementrot the nodes of the structure on the y anis are zero.
\rightarrow TO precede rigid body motion in the y direction, both the x and y displacements of the node A^{\prime} are constricained.

one quarter

The vertical displacements of the nodes of the structure on the x axis are zero. The horizontal displacements of the nodes of the structure on the y amu's are zero.
$2 .(e)$
It is possible to cut the complete structure r ane balt along the line of symmetry.

ONE HALF

infinite Bound any Element
x displacements of the nodes on the line of symmetry are zero.

The nodes represent contrite Element will also have very frau x, y displacements).
A^{\prime} isconstraained in both X, X directions to prevent. the rigid bodes motion.
$2,(t)$
St is possible to cat the complete strutterce 12 one halt along the line of antingmmety.

infinite Boundary Element
Y displacements of the nodes along L.O.AS.
are zero.
AUS, the nodes which ane at cinorinite will have very small x, y displacements. The contains at point A prevent rigid body motion.
(2.2)

Trouble spots in
$B, M, J, F \therefore$ Entrant corners ore sharply curved Edges.

N,I:- vicinity of concentrated reactions
2.3

The length of the given tapered bare $=L$ Area is interpolated as $A=A_{i}(1-\mu)+A ; u$ where $\varepsilon_{e}=\frac{x-x_{1}}{L}=\frac{x-0}{L}=\frac{x}{L}$

$$
\begin{aligned}
& \Rightarrow u=u L \\
& \Rightarrow d u=L d u
\end{aligned}
$$

The consistent node force vector is comes e from the element contribution to the external work potential W :

$$
\begin{aligned}
& W^{e}=\int_{x_{1}}^{x_{2}} q u d x=\int_{0}^{1} q N^{\top} \underline{u}^{e} L d \xi=\left(v^{e}\right)^{\top} \int_{0}^{1} q\left[\begin{array}{c}
1-\varepsilon_{1} \\
4
\end{array}\right] L d \varepsilon e \\
& \tilde{\sigma}_{0}\left(v^{e}\right)^{\top} t^{e}
\end{aligned}
$$

Since, \underline{U}^{e} is arbitrary

$$
\begin{aligned}
& \underline{f}^{e}=\int_{0}^{1} q\left[\begin{array}{c}
1-\varepsilon \\
\varepsilon
\end{array}\right] L d \varepsilon_{e} \\
& q(x)=s A \omega^{2} x \\
& q(a)=S A \omega^{2} u L \\
& \underline{G}^{(e)}=\int_{0}^{1} \Delta A \omega^{2} L^{2}\left[\begin{array}{c}
u^{-u^{2}} \\
\varepsilon^{2}
\end{array}\right] d \varepsilon_{u} \\
& =\Lambda \omega^{2} L^{2} \int_{0}^{1}\left[A_{i}\left(1-a_{1}\right)+A_{j} a^{2}\right]\left[\begin{array}{c}
a_{i} a^{2} \\
\varepsilon^{2}
\end{array}\right] d \varepsilon_{e} \\
& =\operatorname{sw}^{2} L^{2} \int_{0}^{1}\left[A_{i}\left(\varepsilon_{i}-u^{2}-u^{2}-u^{2}+u^{3}\right)+A ; u^{3}+\left[u^{2}-u^{3}\right]\right] d a
\end{aligned}
$$

$$
\begin{aligned}
& =\Delta \omega^{2} L^{2} \int_{0}^{1}\left[\begin{array}{l}
\left(A_{i}\left(\varepsilon_{0}-2 \varepsilon_{1}^{2}+\varepsilon^{3}\right)+A_{j}\left(\varepsilon_{1}^{2}-\varepsilon^{3}\right)\right) \\
\left(A_{i}\left(\varepsilon^{2}-u^{3}\right)+A_{j} \varepsilon^{3}\right)
\end{array}\right] d \varepsilon_{1} \\
& =\Delta \omega^{2} L^{2}\left[\begin{array}{l}
{\left[A_{i}\left(\frac{u_{1}^{2}}{2}-\frac{2}{3} u^{3}+\frac{u^{4}}{4}\right)+A_{j}\left(\frac{a^{3}}{3}-\frac{a^{4}}{4}\right)\right]_{0}^{1}} \\
{\left[A_{i}\left(\frac{u^{3}}{3}-\frac{u^{4}}{4}\right)+A_{j}^{4} u^{4}\right.}
\end{array}\right] \\
& =\operatorname{sic}^{2} L^{2}\left[\begin{array}{l}
A i\left(\frac{1}{2}-\frac{2}{3}+\frac{1}{4}\right)+A ;\left(\frac{1}{3} \frac{-1}{4}\right) \\
A i\left(\frac{1}{3}-\frac{1}{4}\right)+A ; \frac{1}{4}
\end{array}\right] \\
& \Rightarrow \underline{f}^{(\rho)}=s \omega^{2} L^{2}\left[\begin{array}{l}
\frac{A i}{12}+\frac{A j}{12} \\
\frac{A i}{12}+\frac{A j}{4}
\end{array}\right] \\
& \Rightarrow\left[\begin{array}{c}
\sigma_{i}^{e} \\
\sigma_{j}^{e}
\end{array}\right]=\sin ^{2} L^{2}\left[\begin{array}{c}
\frac{A_{i}+A_{j}}{12} \\
\frac{A_{i}+3 A_{j}}{12}
\end{array}\right] \text { (Am) }
\end{aligned}
$$

Fore prismatic Bare $\left(A_{i}=A_{j}\right) ; A_{i}=A_{j}=A$ (scan)

$$
\begin{array}{r}
{\left[\begin{array}{l}
f_{i}^{e} \\
f_{j}^{e}
\end{array}\right]=s w^{2} L^{2}\left[\begin{array}{c}
\frac{A}{6} \\
\frac{A}{3}
\end{array}\right]=\left[\begin{array}{c}
\frac{s \omega^{2} L^{2} A}{6} \\
\frac{\sin L^{2} A}{3}
\end{array}\right]} \\
(A m)
\end{array}
$$

