Computational Structural Mechanics and DYNAMICS

Masters in Numerical Methods
Assignment 10

Solid and Structural Dynamics

Shardool Kulkarni

May 11, 2020

UNIVERSITAT POLITÈCNICA DE CATALUNYA

Contents

1 Problem $1 \quad 2$

2 Problem 2 3
3 Problem 3 4
4 Problem 4 5
5 Problem 5 6

1 Problem 1

In the dynamic system of slide $\mathbf{6}$, let $r(t)$ be a constant force \mathbf{F}. What is the effect of \mathbf{F} on the time-dependent displacement $u(t)$ and the natural frequency of vibration of the system?
To solve for an undamped case we consider $F=0$

$$
\begin{equation*}
k u+m \ddot{u}=0 \tag{1}
\end{equation*}
$$

The equation of this system is given by $u=u_{0} \sin (\omega t+\phi)$, u_{0} being the amplitude, and ω is the natural frequency of vibration, whose value is given by

$$
\begin{equation*}
\omega=\sqrt{\frac{k}{m}} \tag{2}
\end{equation*}
$$

Now for the case of nonzero forces we can see that,

$$
\begin{equation*}
k u+m \ddot{u}=F \tag{3}
\end{equation*}
$$

This is an non-homogeneous differential equation, the solution is given by

$$
\begin{equation*}
u(t)=u_{c}(t)+u_{p}(t) \tag{4}
\end{equation*}
$$

Here, u_{c} is the complimentary solution of the free undamped part, and u_{p} is the particular solution.
To solve the particular solution we solve

$$
\begin{equation*}
k u_{p}+m \ddot{u_{p}}=F \tag{5}
\end{equation*}
$$

with $u_{p}=c$ a constant
That gives us $u_{p}=\frac{F}{k}$, therefore we can say that

$$
\begin{equation*}
u(t)=\frac{F}{k}+u_{0} \sin (\omega t+\phi) \tag{6}
\end{equation*}
$$

The above equation shows that F does not affect the system as the particular solution which is dependent of F is independent of the frequency (ω). It is simply an offset value to the solution. The variation in F may change the value of $u(t)$ but it will affect the displacement in the same way irrespective of the frequency.

2 Problem 2

A weight whose mass is m is placed at the middle of a uniform axial bar of length L that is clamped at both ends. The mass of the bar may be neglected. Estimate the natural frequency of vibration in terms of m, L, E and A.
The maximum displacement will be at $x=\frac{L}{2}$ and it is given by

$$
\begin{equation*}
u_{\max }=\frac{F L^{3}}{192 E I} \tag{7}
\end{equation*}
$$

If we consider a square beam, of side a we can write the moment of inertia as follows

$$
\begin{equation*}
I=\frac{b h^{3}}{12}=\frac{a^{4}}{12} \tag{8}
\end{equation*}
$$

substituting in max displacement equation we get

$$
\begin{equation*}
u_{\max }=\frac{F L^{3}}{16 E a^{4}} \tag{9}
\end{equation*}
$$

Therefore the effective stiffness is

$$
\begin{equation*}
k=\frac{F}{\frac{F L^{3}}{16 E a^{4}}}=\frac{16 E a^{4}}{L^{3}} \tag{10}
\end{equation*}
$$

The frequency is given my

$$
\begin{equation*}
\omega=\sqrt{\frac{k}{m}}=\sqrt{\frac{16 E a^{4}}{m L^{3}}}=\frac{4 a^{2}}{L} \sqrt{\frac{E}{m L}} \tag{11}
\end{equation*}
$$

3 Problem 3

Use the expression on slide 18 to derive the mass matrix of slide 17.
The expression is

$$
\begin{equation*}
\boldsymbol{m}=\int \boldsymbol{N}^{\boldsymbol{T}} \boldsymbol{N} \rho d V \tag{12}
\end{equation*}
$$

We can write this as

$$
\begin{equation*}
m_{i j}=\rho A L \int_{0}^{1} N_{i} N_{j} d \eta \tag{13}
\end{equation*}
$$

Now we can introduce shape functions for this problem $N_{1}=1-\eta$ and $N_{2}=\eta$.
The equation becomes

$$
\boldsymbol{M}=\rho A L \int_{0}^{1}\left[\begin{array}{cc}
N_{1}^{2} & N_{1} N_{2} \tag{14}\\
N_{1} N_{2} & N_{2}^{2}
\end{array}\right] d \eta
$$

Now we can calculate these individually, as following

$$
\begin{gather*}
\int_{0}^{1} N_{1}^{2} d \eta=\int_{0}^{1}\left(1-2 \eta+\eta^{2}\right) d \eta=\frac{1}{3} \tag{15}\\
\int_{0}^{1} N_{1} N_{2} d \eta=\int_{0}^{1}\left(\eta-\eta^{2}\right) d \eta=\frac{1}{6} \tag{16}\\
\int_{0}^{1} N_{1}^{2} d \eta=\int_{0}^{1}\left(\eta^{2}\right) d \eta=\frac{1}{3} \tag{17}
\end{gather*}
$$

The final mass matrix turns out to be

$$
M=\frac{\rho A L}{6}\left[\begin{array}{ll}
2 & 1 \tag{18}\\
1 & 2
\end{array}\right]
$$

4 Problem 4

Obtain also the mass matrix of a two-node, linear displacement element with a variable cross-sectional area that varies from A1 to A2.
The variation in the area can be defined as follows

$$
\begin{equation*}
A(\eta)=\sum N_{i}(\eta) A_{i} \tag{19}
\end{equation*}
$$

The shape functions for a linear iso-parametric element are given by $N_{1}=\frac{1}{2}(1-\eta)$ and $N_{2}=\frac{1}{2}(1+\eta)$
Therefore the mass matrix is given by the following expression,

$$
\boldsymbol{M}=\int_{-1}^{1}\left[\begin{array}{c}
\frac{1}{2}(1-\eta) \tag{20}\\
\frac{1}{2}(1+\eta)
\end{array}\right]\left[\begin{array}{ll}
\frac{1}{2}(1-\eta) & \left.\frac{1}{2}(1+\eta)\right] \rho\left(\frac{A_{1}}{2}(1-\eta)+\frac{A_{2}}{2}(1+\eta)|J| d \eta\right.
\end{array}\right.
$$

The Jacobian $|J|=\frac{L}{2}$, Further simplifying 20 we get

$$
\boldsymbol{M}=\int_{-1}^{1} A_{1}\left[\begin{array}{cc}
-(\eta-1)^{3} & (\eta-1)^{2}(\eta+1) \tag{1}\\
(\eta-1)^{2}(\eta+1) & (\eta+1)^{2}(\eta-1)
\end{array}\right]+A_{2}\left[\begin{array}{cc}
(\eta-1)^{2}(\eta+1) & -(\eta+1)^{2}(\eta-1) \\
-(\eta+1)^{2}(\eta-1) & (\eta+1)^{3}
\end{array}\right] d \eta
$$

Finally performing the integration in the given limits we obtain

$$
\boldsymbol{M}=\frac{\rho L}{12}\left[\begin{array}{cc}
3 A_{1}+A_{2} & A_{1}+A_{2} \tag{22}\\
A_{1}+A_{2} & A_{1}+3 A_{2}
\end{array}\right]
$$

5 Problem 5

A uniform two-node bar element is allowed to move in a 3D space. The nodes have only translational d.o.f. What is the diagonal mass matrix of the element?
Let the density be ρ, area A and length L . Therefore the total mass is $\rho A L$ and since we have two nodes the mass matrix will take the form

$$
M=\frac{\rho A L}{2}\left[\begin{array}{llllll}
1 & & & & & \tag{23}\\
& 1 & & & & \\
& & 1 & & & \\
& & & 1 & & \\
& & & & 1 & \\
& & & & & 1
\end{array}\right]
$$

