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1 Problem 1

In the dynamic system of slide 6, let () be a constant force F. What is the
effect of F on the time-dependent displacement u(t) and the natural frequency
of vibration of the system?

To solve for an undamped case we consider F' = 0

ku + mii = 0 (1)

The equation of this system is given by u = ugsin(wt + ¢), ug being the amplitude, and w
is the natural frequency of vibration, whose value is given by

w=1f" 2)

Now for the case of nonzero forces we can see that,

ku+mi = F (3)

This is an non-homogeneous differential equation, the solution is given by

u(t) = uc(t) + up(t) (4)
Here, u,. is the complimentary solution of the free undamped part, and w, is the particular

solution.

To solve the particular solution we solve

ku,, + mai, = F (5)

with u, = c a constant

That gives us u, = %, therefore we can say that

F .
u(t) = =t upsin(wt + ¢) (6)
The above equation shows that F' does not affect the system as the particular solution which
is dependent of F is independent of the frequency (w). It is simply an offset value to the
solution. The variation in F may change the value of u(t) but it will affect the displacement
in the same way irrespective of the frequency.
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2 Problem 2

A weight whose mass is m is placed at the middle of a uniform axial bar of
length L that is clamped at both ends. The mass of the bar may be neglected.
Estimate the natural frequency of vibration in terms of m, L, E and A.

The maximum displacement will be at x = % and it is given by

FL3
Umax = M (7)

If we consider a square beam, of side a we can write the moment of inertia as follows

bh3 4
=2 -2 (8)

12 12

substituting in max displacement equation we get

FIL3
mar = 16t ¥
Therefore the effective stiffness is
F 16Ea*
k= FI s (10)

16 Ba4

[k [16Ea* 4a> [E )
W= m mL3 L \ mL

The frequency is given my
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3 Problem 3

Use the expression on slide 18 to derive the mass matrix of slide 17.
The expression is
m = / NTNpdV (12)

We can write this as

1
0

Now we can introduce shape functions for this problem Ny =1 —n and Ny = n.

The equation becomes

1 2
N NN
M = pAL ! ol d 14
Now we can calculate these individually, as following
1 1 1
Nidn = / (1= 2n+n%)dn = - (15)
0 0 3
! 1
N1N2d77 = / (n = n")dn = & (16)
0

/N?dn—/ 2)dn :% (17)

The final mass matrix turns out to be

M = M%L E ﬂ (18)
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4 Problem 4

Obtain also the mass matrix of a two-node, linear displacement element with a
variable cross-sectional area that varies from Al to A2.

The variation in the area can be defined as follows
= Z Ni(n)A; (19)

The shape functions for a linear iso-parametric element are given by N; = (1 — 1) and
Ny = %(1 +n)

Therefore the mass matrix is given by the following expression,

11 A A
2 l _ 1 e 22
= [T G- s et a-m+ Earolia @
The Jacobian |J| = %,Further simplifying 20 we get
—(n—1)° (77—1)2(77+1)] {(n D*(n+1)  —(Mn+1)>*n-1)
M = A +A d
/ 1{ Pn+1) (n+1)m—1)] 7 [~ +1)*(n-1) (n+1)° !
(21)
Finally performing the integration in the given limits we obtain
. pL 3A1+A2 A1+A2
M = [A1+A2 A + 34, (22)
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5 Problem 5

A uniform two-node bar element is allowed to move in a 3D space. The nodes
have only translational d.o.f. What is the diagonal mass matrix of the element?

Let the density be p, area A and length L. Therefore the total mass is pAL and since we
have two nodes the mass matrix will take the form
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