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1 Solid and Structural Dynamics

1.1 In the dynamic system of slide 6, let r(t) be a constant force
F. What is the effect of F on the time-dependent displacement
u(t) and the natural frequency of vibration of the system?

This is a second-order linear ordinary differential equation. The equation will be.

F − ku = mu
′′ −→ d2u

dt2
+ k

m
x = F

m
(1)

According to [1], the solution of this differential linear equation will be the sum of a particular
solution and a general solution. The general solution of the homogeneous equation is an har-
monic movement and will have the form of an oscillatory function whose phase and amplitude
are determined by initial conditions, that is,

xh(t) = Ahcos(w0t+ α) (2)

As a particular solution, since the external force is of no oscillatory kind, it won’t have an
harmonic behavior, so it will be a constant in time depending only on F and k.

The representation of the proposed problem, considering that the movement is produced by a
forced oscillation on a system which has viscous forces added can be seen in Fig. 1.

Figure 1: Representation of the system. Extracted from [1].

In this case, ω and b are simply zero, so the proposed solution to the displacement of the mass
according to [1] will be

x(t) = Ahcos(ω0t+ α) + F0

ω2
0m

= Ahcos(ω0t+ α) + F

k
(3)

since the natural frequency of the oscillator will only depend on m, k through ω0 =
√
k/m.

This is already giving the answer to weather F affects the natural frequency. The answer is no,
as it is only influenced by the spring and the mass and not the rest of the parameters is Fig. 1.
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Then, from (3), where Ah, α are two parameters that will be determined based on the initial
conditions of x(t = 0) and its first derivative, it is clear that the force will contribute linearly
to the increase of the displacements.

1.2 A weight whose mass is m is placed at the middle of a uniform
axial bar of length L that is clamped at both ends. The mass of
the bar may be neglected. Estimate the natural frequency of vi-
bration in terms of m, L, E and A . Suggestion: First determine
the effective k.

From strength of materials, the deflection of the fixed-fixed beam proposed due to a static
central load P = mg is given by

δ(x) = Fx2

48EI (3L− 4x); 0 ≤ x ≤ L/2 (4)

Where I is the moment of inertia of the cross section. The natural frequency of the oscillation
will be approximated by the same expression as in the previous exercise, already taking into
account the effective stiffness k = F/δ = mg/δ [1],

ω =
√
k

m
=
√
g

δ
(5)

The total deflection of the mass will be given by the deflection at the location of the mass due
to the weight of the mass. Substituting thus taking into account that x = L/2:

δ = δmax = L3mg

192EI (6)

Thus an approximation to the natural frequency of the oscillation will be

ω =
√

192EI
mL3 (7)

If the cross-section of the bar is a square, then I = A2/12 and

ω =
√

16EA2

mL3 = 4A
√

E

mL3 (8)
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1.3 Use the expression on slide 18 to derive the mass matrix of slide
17.

If the same shape functions used in the derivation of the stiffness matrix are chosen, the matrix
is called the consistent mass matrix. It is denoted here by Me

C. For the 2-node prismatic bar
element moving along x, the stiffness shape functions are Ni = 1− x−xi

l
= 1−ξ

2 and Nj = x−xi

l
=

1+ξ
2 . With dx = ldξ , the consistent mass is easily obtained as

Me
C =

∫ l

0
ρA(Ne)TNedx = ρA

∫ 1

−1

[
1− ξ
ξ

] [
1− ξ ξ

]
dξ = 1

6ρAl
[
1 2
2 1

]
(9)

which is the matrix that we were looking for.

1.4 Obtain also the mass matrix of a two-node, linear displacement
element with a variable cross-sectional area that varies from A1
to A2.

Now we are asked to derive the consistent mass matrix for a 2-node tapered bar element of
length l and constant mass density ρ, moving along its axis x, if the cross section area varies
as A(ξ) = 1

2A1(1− ξ) + 1
2A2(1 + ξ). Now it is simply required to introduce this expression into

equation 10. With this it is obtained

Me
C =

∫ l

0
ρA(Ne)TNedx = ρ

∫ 1

−1

(1
2A1(1− ξ) + 1

2A2(1 + ξ)
) [1− ξ

ξ

] [
1− ξ ξ

]
dξ (10)

Me
C = ρl

12

[
3A1 + A2 A1 + A2
A1 + A2 3A2 + A1

]
(11)

1.5 A uniform two-node bar element is allowed to move in a 3D
space. The nodes have only translational d.o.f. What is the
diagonal mass matrix of the element?

Globalization to 2D and 3D involves application of 2 × 4 and 2×6 transformation matrices,
respectively. As the local element has zero stiffness in some directions, if the associated degrees
of freedom are explicitly kept in the local stiffness, those rows and columns are zero and have
no effect on the global stiffness. On the other hand, translational masses never vanish, so all
translational masses must be retained in the local mass matrix. The two-node prismatic bar
moving in the x, y plane has a diagonalized lumping matrix of the form

ML
e = 1

2ρAL


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 (12)
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1.6 Concluding remarks
It has been studied that to do dynamic and vibration finite element analysis, it is needed a mass
matrix as well as the stiffness matrix. Mass matrices for individual elements are formed in local
coordinates, transformed to global, and merged into the master mass matrix following exactly
the same techniques used for K. However, a notable difference with the stiffness matrix is the
possibility of using a diagonal mass matrix based on direct lumping, and it entails significant
computational advantages for calculations.
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