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1 Question 10.1

1.1 Statement

In the dynamic system of slide 6, let r(t) be a constant force F . What is the effect of F on the time-dependent
displacement u(t) and the natural frequency of vibration of the system?

1.2 Solution

The equation in question is the following:
mü+ ku = F (1)

To solve it we must first solve the homogeneous equation:

müh + kuh = 0 (2)

There are many methods to solve this but it’s easy to see that the function proportional to its derivative is the
sine wave:

uh(t) = A sin(ωt+ φ) (3)

By putting ω into 2 we can see the parameters:

• ω =
√
k/m = 2πf is the angular speed, proportional to the frequency.

• A is the amplitude, dependent on initial conditions.

• φ is the phase, also dependent on initial conditions.

Now we must solve the particular equation. It’s clear that a constant function up(t) = a will fit the equation:

müp + kup = F

kup = F

Hence our particular equation looks like:

up(t) =
F

k
(4)

Since this is simply an offset we can label it u0 := F/k. Now the solution to the system is the superposition of
uh and up. It therefore looks like:

u(t) = u0 +A sin(ωt+ φ) (5)

1.3 Conclusion

From equation 5 we see that F is not linked to the frequency ω = 2πf . Instead it simply acts as an offset. The
effect of F can be completely removed by working on a different base. If we work with x(t) = u(t)− u0 the
equation can be expressed as:

x(t) = A sin(ωt+ φ) (6)
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2 Question 10.2

2.1 Statement

A weight whose mass is m is placed at the middle of a uniform axial bar of length L that is clamped at both
ends. The mass of the bar may be neglected. Estimate the natural frequency of vibration in terms of m, L, E
and A. Suggestion: First determine the effective k.

2.2 Solution

We will start of with a formula for deflection in clamped bars:

u =
FL3

192EI
@ x =

L

2
(7)

We need the inertia of the bar. For this we need to know its cross-section shape. Since it is unspecified, I
decided to go for a circular area. The inertia will be:

I =
πR4

4
=
A2

4π
(8)

And substitute into the equation:

u =
πFL3

48EA2
@ x =

L

2
(9)

We can now move on to determining its effective stiffness coefficient.

k =
dF

du
=

48EA2

πL3
(10)

With this we can calculate the natural frequency of vibration:

ω =

√
k

m
=

4A

L

√
3E

πmL
(11)
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3 Question 10.3

3.1 Statement

Use the expression on slide 18 to derive the mass matrix of slide 17.

Note: there are no equations in slide 18 nor matrices in 17. I solved it assuming this refered to slides 20
and 19.

3.2 Solution

The equation in question is

MMM =

∫
Ω

ρNNNTNNNdV (12)

In index notation this looks like
mij =

∫
Ω

ρNiNjdV (13)

We must assume constant density and cross section:

mij =

∫ 1

0

ρNiNjAdx

= ρA

∫ L

0

NiNj dx

= ρAL

∫ 1

0

NiNjdξ

Hence the equation becomes:

MMM = ρAL

∫ 1

0

[
N2

1 N1N2

N1N2 N2
2

]
dξ (14)

This is a good point to introduce the shape functions:

N1 = 1− ξ (15)

N2 = ξ (16)

And the integrals of the relevant combinations:∫ 1

0

N2
1 dξ =

∫ 1

0

(1− 2ξ + ξ2) dξ =

[
ξ − ξ2 +

ξ3

3

]1

0

=
1

3
(17)∫ 1

0

N1N2dξ =

∫ 1

0

(ξ − ξ2)dξ =

[
ξ

2
− ξ3

3

]1

0

=
1

6
(18)∫ 1

0

N2
2 dξ =

∫ 1

0

ξ2 dξ =

[
ξ3

3

]1

0

=
1

3
(19)

Hence the mass matrix turns out

MMM =
ρAL

6

[
2 1
1 2

]
(20)

which is equivalent to the one found in slide 19.
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4 Question 10.4

4.1 Statement

Obtain also the mass matrix of a two-node, linear displacement element with a variable cross-sectional area
that varies from A1 to A2.

4.2 Solution

We can start defining the tapering area:

A = N1A1 +N2A2 = NkAk (21)

Let’s start as before:

mij =

∫
Ω

ρNiNjdV

= ρ

∫ 1

0

NiNj
dV

dξ
dξ

= ρ

∫ 1

0

NiNj
dV

dξ
dξ

= ρ

∫ 1

0

NiNjLAdξ

= ρLAk

∫ 1

0

NiNjNkdξ

Hence:

MMM = ρL

(
A1

∫ 1

0

[
N3

1 N2
1N2

N2
1N2 N1N

2
2

]
dξ +A2

∫ 1

0

[
N2

1N2 N1N
2
2

N1N
2
2 N3

2

]
dξ

)
(22)

Here are the integrals: ∫ 1

0

N3
1 dξ =

1

4

∫ 1

0

N2
1N2dξ =

1

12∫ 1

0

N3
2 dξ =

1

4

∫ 1

0

N1N
2
2 dξ =

1

12

The equation becomes:

MMM = ρL

(
A1

[
1/4 1/12
1/12 1/12

]
+A2

[
1/12 1/12
1/12 1/4

])
=
ρL

12

(
A1

[
3 1
1 1

]
+A2

[
1 1
1 3

])
(23)

Hence, the mass matrix is:

MMM =
ρL

12

[
3A1 +A2 A1 +A2

A1 +A2 A1 + 3A2

]
(24)

We can check that for A := A1 = A2 we recover the constant-area matrix:

MMM =
ρLA

12

[
4 2
2 4

]
=
ρLA

6

[
2 1
1 2

]
(25)
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5 Question 10.5

5.1 Statement

A uniform two-node bar element is allowed to move in a 3D space. The nodes have only translational d.o.f.
What is the diagonal mass matrix of the element?

5.2 Solution

We can get the solution straight from slide 16:

MMM =
ρAL

2
III6 =

ρAL

2


1

1
1

1
1

1

 (26)
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