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1 Question 10.1

1.1 Statement

In the dynamic system of slide 6, let r(¢) be a constant force F'. What is the effect of F' on the time-dependent
displacement u(¢) and the natural frequency of vibration of the system?

1.2 Solution

The equation in question is the following:
miu+ ku=F D

To solve it we must first solve the homogeneous equation:
miip, + kup, =0 (2)

There are many methods to solve this but it’s easy to see that the function proportional to its derivative is the

sine wave:
up(t) = Asin(wt + @) 3)

By putting w into 2 we can see the parameters:
* w=/k/m = 2 f is the angular speed, proportional to the frequency.
* A is the amplitude, dependent on initial conditions.
* ¢ is the phase, also dependent on initial conditions.
Now we must solve the particular equation. It’s clear that a constant function u,(t) = a will fit the equation:
miiy, + ku, = F
kuy, = F

Hence our particular equation looks like:

F
= 4)

up(t) =
Since this is simply an offset we can label it ug := F'/k. Now the solution to the system is the superposition of

up, and u,. It therefore looks like:
u(t) = ug + Asin(wt + ¢) (5)

1.3 Conclusion

From equation 5 we see that F is not linked to the frequency w = 27 f. Instead it simply acts as an offset. The
effect of F' can be completely removed by working on a different base. If we work with z(t) = u(t) — uo the
equation can be expressed as:

x(t) = Asin(wt + @) 6)
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2 Question 10.2

2.1 Statement

A weight whose mass is m is placed at the middle of a uniform axial bar of length L that is clamped at both
ends. The mass of the bar may be neglected. Estimate the natural frequency of vibration in terms of m, L, E
and A. Suggestion: First determine the effective k.

2.2 Solution

We will start of with a formula for deflection in clamped bars:

FI3 L
= = — '7
YT 192ET @ )

2

We need the inertia of the bar. For this we need to know its cross-section shape. Since it is unspecified, I
decided to go for a circular area. The inertia will be:

TR*  A?
I=—=— 8
4 4 ®
And substitute into the equation:
nFL3 L
_ i 9
U T REA @r=3
We can now move on to determining its effective stiffness coefficient.
dF  48EA?
k=—=—9r 10
du w3 (10)

With this we can calculate the natural frequency of vibration:

|k 4A | 3F
w= m L\ 7wmL (D

Computational Structural Mechanics and Dynamics 2 Numerical Methods in Engineering



Eduard Gomez May 10, 2020

3 Question 10.3

3.1 Statement

Use the expression on slide 18 to derive the mass matrix of slide 17.

Note: there are no equations in slide 18 nor matrices in 17. I solved it assuming this refered to slides 20
and 19.

3.2 Solution

The equation in question is
M = / pNTNav (12)
Q

In index notation this looks like
Q

We must assume constant density and cross section:
1
0

L
0

1
0
Hence the equation becomes:
1 2
N N1 N:

M = pAL ! 2 d 14

This is a good point to introduce the shape functions:
Ny =1-¢ (15)
Ny =¢ (16)

And the integrals of the relevant combinations:

1 1 53 1 1
[ wtae= [la-aerenae=le-er§] -3 a7
0 0 3lo 3
1 1 371
_ e |88 L
/ONldes—/o (€ £>d£—{2 3]0—6 (18)
1 1 55 1 1
[ e [Ceac=|§] =3 (19)
0 0 3 0 3
Hence the mass matrix turns out AL
P 2 1
w = A L 2} (20)
which is equivalent to the one found in slide 19.
O]
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4 Question 10.4

4.1 Statement

Obtain also the mass matrix of a two-node, linear displacement element with a variable cross-sectional area

that varies from Al to A2.

4.2 Solution

We can start defining the tapering area:
A= N{A; + NyAy = N, A,

Let’s start as before:
Q
1
dV
o [ Vi G
0 7 d¢
1
dv
= N;N,—d
1
0

1
— pLA, / N;N; Nydg
0

1 1
M = pL (Al/o |:N12N2 N1N22 df + AQ o N1N22

Here are the integrals:
1
/ N}d¢ =
0

1
/ N3d¢ =
0

Hence:

e B

The equation becomes:

12

M= oL (/h{1/4 1/12}+142[1/12 1/12}) pL(/il{

112 1/12 112 1/4

Hence, the mass matrix is:
_pL | 3A + Ay AL+ A
T 12| A1+ Ay A+ 34

We can check that for A := A; = A, we recover the constant-area matrix:

_pLA 4 2| pLA| 2 1
M = 12[2 4} 6 1 2

1
/ N N2d¢ =
0

3 1

1

1

N1 N2
N3 W

1 ) 1
NiNdé = —
/0 L € 12

1
12

By

11
1 3

)

(2D

(22)

(23)

(24)

(25)
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5 Question 10.5

5.1 Statement

A uniform two-node bar element is allowed to move in a 3D space. The nodes have only translational d.o.f.
What is the diagonal mass matrix of the element?

5.2 Solution

We can get the solution straight from slide 16:

M=l = PAE X (26)
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