Master's Degree Numerical Methods in Engineering

UNIVERSITAT POLITÈCNICA
DE CATALUNYA
BARCELONATECH

Computational Structural Mechanics and Dynamics

Homework 10: Dynamic

Author:
Mariano Tomás Fernandez

Professor:
Miguel Cervera
Francisco Zárate

Contents

1 Assignment 10.1 2
2 Assignment 10.2 2
3 Assignment 10.3 3
4 Assignment 10.4 3
5 Assignment 10.5 4

Assignment 10.1

In the dynamic system of slide 6 , let $r(t)$ be a constant force F. What is the effect of F on the time-dependent displacement $u(t)$ and the natural frequency of vibration of the system?

Assignment 10.2

A weight whose mass is m is placed at the middle of a uniform axial bar of length L that is clamped at both ends. The mass of the bar may be neglected. Estimate the natural frequency of vibration in terms of m, L, E and A. Suggestion: First determine the effective k.

Assignment 10.3

Use the expression on slide 18 to derive the mass matrix of slide 17 .

Assignment 10.4

Obtain also the mass matrix of a two-node, linear displacement element with a variable cross-sectional area that varies from A_{1} to A_{2}.

Assignment 10.5

A uniform two-node bar element is allowed to move in a 3D space. The nodes have only translational d.o.f. What is the diagonal mass matrix of the element?

1 Assignment 10.1

In the dynamic system of slide 6 , let $r(t)$ be a constant force F. What is the effect of F on the time-dependent displacement $u(t)$ and the natural frequency of vibration of the system?
The dynamic system is shown in Figure 1. where the applied force $r(t)=F$ is a constant.

Figure 1: Dynamic system.

For an harmonic system the solution will be in the shape of Eq. (1) in order to have a initial displacement in the shape of F / k and a initial velocity $\dot{u}(t=0)=0$.

$$
\begin{align*}
u(t) & =F / k-F / k \cdot \cos (\omega t) \tag{1}\\
\dot{u}(t=0) & =+F / k \cdot \omega \cdot \sin (\omega 0)=0 \\
\ddot{u}(t) & =+F / k \cdot \omega^{2} \cdot \cos (\omega t)
\end{align*}
$$

Using Newton's second law reads as Eq. (2):

$$
\begin{gather*}
{\left[k(F / k-F / k \cdot \cos (\omega t))+m \cdot F / k \cdot \omega^{2} \cdot \cos (\omega t)\right]=F} \tag{2}\\
-F \cdot \cos (\omega t)+m \cdot F / k \cdot \omega^{2} \cdot \cos (\omega t)=0 \\
-1+m / k \cdot \omega^{2}=0 \\
\omega= \pm \sqrt{k / m}
\end{gather*}
$$

2 Assignment 10.2

A weight whose mass is m is placed at the middle of a uniform axial bar of length L that is clamped at both ends. The mass of the bar may be neglected. Estimate the natural frequency of vibration in terms of m, L, E and A. Suggestion: First determine the effective k.
Considering from the previous exercise that the frequency is related to the ratio between the stiffness k and the mass $m(\omega=\sqrt{k / m})$ it is important first to determine k. To this end, the force applied to perform a displacement of the bar will be calculated.

The only force generating a displacement is the mass placed at the middle of the axial bar, doing a force in the direction of the gravity, and the maximum displacement of a punctual load in the middle length of a clamped bar is:

$$
\delta_{\max }=\frac{F \cdot L^{3}}{192 \cdot E J}
$$

where F is the force generated by the mass, L is the length of the bar, E is the Young's Modulus and J is the inertia of the bar in the direction of interest. These constants will be determined, assuming the bar is a square:

$$
J=b \cdot h^{3} / 12=A^{2} / 12
$$

$$
\begin{gathered}
F=m \cdot g \\
\delta_{\max }=\frac{m g L^{3}}{192 \cdot E \cdot A^{2} / 12}=\frac{m g L^{3}}{16 \cdot E \cdot A^{2}}
\end{gathered}
$$

Then the stiffness k is defined as the force to apply to generate a unite movement. Then considering that the force is $F=m \cdot g$, the stiffness reads:

$$
k=\frac{F}{\delta_{\max }}=\frac{m \cdot g}{\frac{m g L^{3}}{16 \cdot E \cdot A^{2}}}=\frac{16 \cdot E \cdot A^{2}}{L^{3}}
$$

Then, it is possible to calculate the frequency of the structure:

$$
\omega= \pm \sqrt{\frac{16 E A^{2}}{m L^{3}}}
$$

3 Assignment 10.3

Use the expression on slide 18 to derive the mass matrix of slide 17 .
To obtain the expression for the consistent mass matrix for 1D linear elements, the expression shown in slide 17 written in Eq. (3), requires to use the shape functions. For the sake of simplicity, isoparametric functions are chosen, and the important equations are presented:

$$
\begin{align*}
& m=\int N^{T} N \rho d V \tag{3}\\
& N_{1}(\xi)=\frac{1}{2} \cdot(1-\xi) \\
& N_{2}(\xi)=\frac{1}{2} \cdot(1+\xi)
\end{align*}
$$

Then the matrix form of the expression of Eq. (3) is:

$$
m=\int_{-1}^{1} \frac{1}{2}\left[\begin{array}{c}
(1-\xi) \\
(1+\xi)
\end{array}\right] \cdot \frac{1}{2}\left[\begin{array}{ll}
(1-\xi) & (1+\xi)] \rho A|J| d \xi
\end{array}\right.
$$

where the Jacobian of the transformation is constant and equal to $J=L / 2$:

$$
m=\frac{1}{8} \rho A L \int_{-1}^{1}\left[\begin{array}{cc}
(1-\xi)^{2} & \left(1-\xi^{2}\right) \\
\left(1-\xi^{2}\right) & (1+\xi)^{2}
\end{array}\right] d \xi=\frac{1}{8} \rho A L\left[\begin{array}{ll}
8 / 3 & 4 / 3 \\
4 / 3 & 8 / 3
\end{array}\right]
$$

The final consistent mass matrix is:

$$
m=\rho A L\left[\begin{array}{ll}
1 / 3 & 2 / 3 \\
2 / 3 & 1 / 3
\end{array}\right]
$$

4 Assignment 10.4

Obtain also the mass matrix of a two-node, linear displacement element with a variable cross-sectional area that varies from A_{1} to A_{2}.
Now the difference will be that A is not a constant anymore, therefore it will not be possible to take it out from the integral. The equation used to described $A(x)$ is shown in Eq. (4).

$$
\begin{equation*}
A(x)=A_{1}+\left(A_{2}-A_{1}\right) \cdot \frac{x}{L} \tag{4}
\end{equation*}
$$

Using isoparametric description for $A(x)$

$$
\begin{gathered}
A(\xi)=\frac{A_{1}}{2} \cdot(1-\xi)+\left(A_{2}-A_{1}\right) \cdot \frac{(1+\xi)}{2 L} \\
m=\int_{-1}^{1} \frac{1}{2}\left[\begin{array}{l}
(1-\xi) \\
(1+\xi)
\end{array}\right] \cdot \frac{1}{2}[(1-\xi) \quad(1+\xi)] \rho A(\xi)|J| d \xi
\end{gathered}
$$

$$
\begin{gathered}
m=\frac{1}{8} A_{1} \rho L \int_{-1}^{1}(1-\xi) \cdot\left[\begin{array}{cc}
(1-\xi)^{2} & \left(1-\xi^{2}\right) \\
\left(1-\xi^{2}\right) & (1+\xi)^{2}
\end{array}\right] d \xi+\frac{1}{8}\left(A_{2}-A_{1}\right) \rho L \int_{-1}^{1}(1+\xi) \cdot\left[\begin{array}{cc}
(1-\xi)^{2} & \left(1-\xi^{2}\right) \\
\left(1-\xi^{2}\right) & (1+\xi)^{2}
\end{array}\right] d \xi \\
m=\frac{1}{8} A_{1} \rho L \cdot\left[\begin{array}{cc}
4 & 1 / 3 \\
1 / 3 & 1 / 3
\end{array}\right]+\frac{1}{8}\left(A_{2}-A_{1}\right) \rho L\left[\begin{array}{cc}
1 / 3 & 1 / 3 \\
1 / 3 & 4
\end{array}\right] \\
m=A_{1} \rho L \cdot\left[\begin{array}{cc}
2 & 1 / 24 \\
1 / 24 & 1 / 24
\end{array}\right]+A_{2} \rho L\left[\begin{array}{cc}
1 / 24 & 1 / 24 \\
1 / 24 & 2
\end{array}\right]
\end{gathered}
$$

5 Assignment 10.5

A uniform two-node bar element is allowed to move in a 3D space. The nodes have only translational d.o.f. What is the diagonal mass matrix of the element?
According to the slide 16 the mass matrix of a 3D two-noded bar is:

$$
m=\frac{\rho A L}{2} \cdot I_{6}=\frac{\rho A L}{2}\left[\begin{array}{cccccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 1
\end{array}\right]
$$

