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On “Solid and Structural Dynamics”:

1 Assignment 10.1

In the dynamic system of slide 6, let r(t) be a constant force F . What is the
effect of F on the time-dependent displacement u(t) and the natural frequency
of vibration of the system?

Form Newton’s second law:
ku+mü = F

Considering the free (F=0) undamped vibration:

ku+mü = 0 (1)

The solution of our problem will be:

u = ūsin(wt)

Where:

• ū : is the amplitude of motion.

• w : is the natural frequency of vibration.

Therefore:
ü = −ūw2sin(wt)

Substituting into 1, with F=0:

k(ūsin(wt))−m(ūw2sin(wt)) = 0

Therefore:

w =

√
k

m

Now for the Undamped, Forced Vibrations:

ku+mü = F (2)

This is just a nonhomogeneous differential equation and we know how to solve these. The
general solution will be:

u(t) = uc(t) + UP (t)

where the complementary solution is the solution to the free, undamped vibration case.
To get the particular solution we can use either undetermined coefficients or variation of
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parameters depending on which we find easier for a given forcing function. For a constant
force, the solution yields:

u(t) =
F − Fcos(wt)

k

ü =
Fw2cos(wt)

k

Substituting into 2:

k(
F − Fcos(wt)

k
) +m(

Fw2cos(wt)

k
) = F

Therefore:

w =
π(2n− 1)

2t
and k 6= 0 and t 6= 0 n ∈ Z

w = ±
√
k

m
and

√
m 6= 0 and k 6= 0

There is a particular type of forcing function that we should take a look at since it leads to
some interesting results. Let’s suppose that the forcing function is a simple periodic function
of the form:

F (t) = F0cos(wt)

Therefore:
ku+mü = F0cos(wt)

The complementary solution will be:

uc(t) = c1cos(w0t) + c2sin(w0t)

For the particular solution, we will have to check for the cases:

• w0 6= w

• w0 = w

For the first case our displacement function consists of two cosines and is nice and well
behaved for all time.
In contrast, the second case, will have some serious issues at t increases. The addition of the
t in the particular solution will mean that we are going to see an oscillation that grows in
amplitude as t increases. This case is called resonance and we would generally like to avoid
this at all costs.

2 Assignment 10.2

A weight whose mass is m is placed at the middle of a uniform axial bar of length
L that is clamped at both ends. The mass of the bar may be neglected. Estimate
the natural frequency of vibration in terms of m, L, E and A.
Suggestion: First determine the effective k.
The maximum displacement will be presented at x = L

2
, and is defined by:

uL
2

=
FL3

192EI

If we let the beam be square:

I =
bh3

12
=
A2

12
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Substituting into the maximum displacement, it yields:

uL
2

=
FL3

192EA2

12

=
FL3

16EA2

Therefore, the effective stiffness matrix is:

k =
F
FL3

16EA2

=
16EA2

L3

Since we have a constant force applied to the system:

w =

√
16EA2

mL3
=

4A

L

√
E

mL

3 Assignment 10.3

Use the expression on slide 18 to derive the mass matrix of slide 17. Consistent
element mass:

m =

∫
NTNρdV

For a linear Lagrange (isoparametric) element with two nodes at ξ = −1 and ξ = 1 we obtain
the following shape functions:

N1 =
1

2
(1− ξ)

N2 =
1

2
(1 + ξ)

Therefore:

m =

∫ 1

−1

[
1
2
(1− ξ)

1
2
(1 + ξ)

] [
1
2
(1− ξ) 1

2
(1 + ξ)

]
ρA|J |dξ

Where the Jacobian is:

|J | = L

2

Therefore:

m =
ρAL

8

∫ 1

−1

[
(1− ξ)2 (1− ξ)(1 + ξ)

(1− ξ)(1 + ξ) (1 + ξ)2

]
dξ

m =
ρAL

8

[
(1−ξ)3

3
ξ − ξ3

3

ξ − ξ3

3
(1+ξ)3

3

]1
−1

m =
ρAL

8

[
8
3

4
3

4
3

8
3

]
Therefore, we obtain:

m =

[
ρAL
3

ρAL
6

ρAL
6

ρAL
3

]
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4 Assignment 10.4

Obtain also the mass matrix of a two-node, linear displacement element with a
variable cross-sectional area that varies from A1 to A2. The approximation of the
area can be defined as follows:

A(ξ) =
∑

Ni(ξ)Ai

Therefore:

m =

∫ 1

−1

[
1
2
(1− ξ)

1
2
(1 + ξ)

] [
1
2
(1− ξ) 1

2
(1 + ξ)

]
ρ(
A1

2
(1− ξ) +

A2

2
(1 + ξ))|J |dξ

m =
ρL

8

∫ 1

−1

[
(1− ξ)2 (1− ξ)(1 + ξ)

(1− ξ)(1 + ξ) (1 + ξ)2

]
(
A1

2
(1− ξ) +

A2

2
(1 + ξ))dξ

m =
ρL

16

∫ 1

−1

A1

[
−(ξ − 1)3 (ξ − 1)2(ξ + 1)

(ξ + 1)(ξ − 1)2 −(ξ + 1)2(ξ − 1)

]
+A2

[
(ξ − 1)2(ξ + 1) −((ξ + 1)2(ξ − 1)
−(ξ + 1)2(ξ − 1) (ξ + 1)3

]

m =
ρL

16
[A1

[
− ξ4

4
+ ξ3 − 3ξ2

2
+ ξ ξ4

4
− ξ3

3
− ξ2

2
+ ξ

ξ4

4
− ξ3

3
− ξ2

2
+ ξ − ξ4

4
− ξ3

3
+ ξ2

2
+ ξ

]
+A2

[
ξ4

4
− ξ3

3
− ξ2

2
+ ξ − ξ4

4
− ξ3

3
+ ξ2

2
+ ξ

− ξ4

4
− ξ3

3
+ ξ2

2
+ ξ ξ4

4
+ ξ3 + 3ξ2

2
+ ξ

]
]1−1

Therefore:

m =

[
ρL(3A1+A2)

12
ρL(A1+A2)

12
ρL(A1+A2)

12
ρL(A1+3A2)

12

]

5 Assignment 10.5

A uniform two-node bar element is allowed to move in a 3D space. The nodes
have only translational d.o.f. What is the diagonal mass matrix of the element?
Assigning half of the mas in a constant A element of L size without any rotations allowed
we get the following diagonal mass matrix of the element in a 3D space:

m =



ρAL
2

0 0 0 0 0

0 ρAL
2

0 0 0 0

0 0 ρAL
2

0 0 0

0 0 0 ρAL
2

0 0

0 0 0 0 ρAL
2

0

0 0 0 0 0 ρAL
2
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