Assignment 1

Nadim Saridar

February 17, 2020

Part 1

Figure 1: Three Bars Truss Problem
a) Each bar is considered as an element, numbered as shown in the figure 1. The angles with the horizontal for each element are the following:

$$
\begin{gathered}
\theta_{1}=90^{\circ}+\alpha \\
\theta_{2}=90^{\circ} \\
\theta_{3}=90^{\circ}-\alpha
\end{gathered}
$$

Having $s=\sin (\alpha)$, and $c=\cos (\alpha)$, the following expressions will be fixed to assemble the stiffness matrix:

$$
\begin{array}{ll}
\sin \left(\theta_{1}\right)=c & \cos \left(\theta_{1}\right)=-s \\
\sin \left(\theta_{2}\right)=1 & \cos \left(\theta_{2}\right)=0 \\
\sin \left(\theta_{3}\right)=c & \cos \left(\theta_{3}\right)=s
\end{array}
$$

In this problem, there are 3 elements with a total of 4 nodes, each node with 2 degrees of freedom. Therefore the result of the master stiffness equation will be an 8×8 matrix built with 3 stiffness matrices from the 3 bars, each matrix will be 4×4 and have the following formula:

$$
K^{e}=\left(\frac{E A}{L}\right)^{e}\left[\begin{array}{cccc}
c^{2} & s c & -c^{2} & -s c \\
s c & s^{2} & -s c & -s^{2} \\
-c^{2} & -s c & c^{2} & s c \\
-s c & -s^{2} & s c & s^{2}
\end{array}\right]
$$

Therefore the following matrices are obtained:
$K^{1}=\left(\frac{E A}{L / c}\right)^{1}\left[\begin{array}{cccc}s^{2} & -s c & -s^{2} & s c \\ -s c & c^{2} & s c & -c^{2} \\ -s^{2} & s c & s^{2} & -s c \\ s c & -c^{2} & -s c & c^{2}\end{array}\right]=\left(\frac{E A}{L}\right)^{1}\left[\begin{array}{cccc}c s^{2} & -c^{2} s & -c s^{2} & c^{2} s \\ -c^{2} s & c^{3} & c^{2} s & -c^{3} \\ -c s^{2} & c^{2} s & c s^{2} & -c^{2} s \\ c^{2} s & -c^{3} & -c^{2} s & c^{3}\end{array}\right]$
$K^{2}=\left(\frac{E A}{L}\right)^{2}\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$
$K^{3}=\left(\frac{E A}{L}\right)^{3}\left[\begin{array}{cccc}c s^{2} & c^{2} s & -c s^{2} & -c^{2} s \\ c^{2} s & c^{3} & -c^{2} s & -c^{3} \\ -c s^{2} & -c^{2} s & c s^{2} & c^{2} s \\ -c^{2} s & -c^{3} & c^{2} s & c^{3}\end{array}\right]$
Assembling these matrices in the global matrix, with $\frac{E A}{L}$ as a common factor, the resultant stiffness matrix is the following:
$K=\frac{E A}{L}\left[\begin{array}{cccccccc}c s^{2}+c s^{2} & c^{2} s-c^{2} s & -c s^{2} & c^{2} s & 0 & 0 & -c s^{2} & -c^{2} s \\ & c^{3}+1+c^{3} & c^{2} s & -c^{3} & 0 & -1 & -c^{2} s & -c^{3} \\ & & c s^{2} & -c^{2} s & 0 & 0 & 0 & 0 \\ & & & c^{3} & 0 & 0 & 0 & 0 \\ & & & & & 0 & 0 & 0 \\ & & & & & 1 & 0 & 0 \\ & & & & & & c s^{2} & c^{2} s \\ & & & & & & & c^{3}\end{array}\right]$
$K=\frac{E A}{L}\left[\begin{array}{cccccccc}2 c s^{2} & 0 & -c s^{2} & c^{2} s & 0 & 0 & -c s^{2} & -c^{2} s \\ & 1+2 c^{3} & c^{2} s & -c^{3} & 0 & -1 & -c^{2} s & -c^{3} \\ & & c s^{2} & -c^{2} s & 0 & 0 & 0 & 0 \\ & & & c^{3} & 0 & 0 & 0 & 0 \\ & & & & 0 & 0 & 0 & 0 \\ & & s y m & & & 1 & 0 & 0 \\ & & & & & & c s^{2} & c^{2} s \\ & & & & & & & c^{3}\end{array}\right]$
Each node has two degrees of freedom (in the x and y directions), therefore the deformation vector will be the following:

$$
u=\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]
$$

There are forces for each node in the x and y directions. In this cases, only two forces are applied on node 1 , therefore the force vector will be the following:

$$
f=\left[\begin{array}{c}
H \\
-P \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

Putting the equation together:

$$
\begin{gathered}
K u=f \\
\frac{E A}{L}\left[\begin{array}{cccccccc}
2 c s^{2} & 0 & -c s^{2} & c^{2} s & 0 & 0 & -c s^{2} & -c^{2} s \\
& 1+2 c^{3} & c^{2} s & -c^{3} & 0 & -1 & -c^{2} s & -c^{3} \\
& & c s^{2} & -c^{2} s & 0 & 0 & 0 & 0 \\
& & & c^{3} & 0 & 0 & 0 & 0 \\
& & & & 0 & 0 & 0 & 0 \\
& & s y m & & & 1 & 0 & 0 \\
& & & & & & c s^{2} & c^{2} s \\
& & & & & & & c^{3}
\end{array}\right]\left[\begin{array}{c}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]=\left[\begin{array}{c}
H \\
-P \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
\end{gathered}
$$

The bar element is perpendicular to the x direction if node 3, and the forces are on the same element on node 1 , and following the direction matrix, $u_{x 3}$ doesn't have any effect on the displacement even if it's not fixed in the x direction, this explains
b) Nodes 2,3 and 4 don't move, therefore their displacements in both x and y will be 0 .

$$
u=\left[\begin{array}{c}
u_{x 1} \\
u_{y 1} \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{array}\right]
$$

This leads to only two unknowns, and the other values that are multiplied by 0 can be removed from the stiffness matrix. Therefore two equations are enough to solve this problem, which are the first and second rows of the matrix:

$$
\frac{E A}{L}\left[\begin{array}{cc}
2 c s^{2} & 0 \\
0 & 1+2 c^{3}
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right]=\left[\begin{array}{c}
H \\
-P
\end{array}\right]
$$

c) Solving the above equation for each displacement:
$u_{x 1}=\frac{H L}{2 E A c s{ }^{2}}$
$u_{y 1}=\frac{-P L}{E A}\left(\frac{1}{1+2 c^{3}}\right)$

When $\alpha \rightarrow 0$ and $\alpha \rightarrow \frac{\pi}{2}$, the following displacements are obtained respectively:
$u_{x 1}=\frac{H L}{2 E A \times 0}=\infty \quad u_{x 1}=\frac{H L}{2 E A \times 0}=\infty$
$u_{y 1}=\frac{-P L}{E A}\left(\frac{1}{1+2}\right)=\frac{-P L}{3 E A} \quad u_{y 1}=\frac{-P L}{E A}\left(\frac{1}{1+2 \times 0}\right)=\frac{-P L}{E A}$
From the answers above, if $H \neq 0$ and $\alpha \rightarrow 0$, the answer "blows up"
d) Convert the displacement matrix to the local displacement for each element:

$$
\begin{gathered}
\bar{u}^{e}=T^{e} u^{e} \\
{\left[\begin{array}{c}
\overline{u_{x i}} \\
\overline{u_{y i}} \\
\overline{u_{x j}} \\
\overline{u_{y j}}
\end{array}\right]=\left[\begin{array}{cccc}
c & s & 0 & 0 \\
-s & c & 0 & 0 \\
0 & 0 & c & s \\
0 & 0 & -s & c
\end{array}\right]\left[\begin{array}{c}
u_{x i} \\
u_{y i} \\
u_{x j} \\
u_{y j}
\end{array}\right]}
\end{gathered}
$$

Elements from 1 to 3 will be solved in function of α.
Element 1:

$$
\begin{gathered}
{\left[\begin{array}{l}
u_{x 1}^{-} \\
u_{y 1}^{-} \\
u_{x 2}^{-} \\
u_{y 2}^{-}
\end{array}\right]=\left[\begin{array}{cccc}
-s & c & 0 & 0 \\
-c & -s & 0 & 0 \\
0 & 0 & -s & c \\
0 & 0 & -c & -s
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2}
\end{array}\right]} \\
{\left[\begin{array}{c}
u_{x 1}^{-} \\
u_{y 1}^{-} \\
u_{x 2}^{-} \\
u_{y 2}^{-}
\end{array}\right]=\left[\begin{array}{c}
-\frac{H L}{2 E A c s}-\frac{P L c}{E A\left(1+2 c^{3}\right)} \\
-\frac{H L}{2 E A s^{2}}+\frac{P L s}{E A\left(1+2 c^{3}\right)} \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Elongation: $d=-u_{x}^{-}=\frac{H L}{2 E A c s}+\frac{P L c}{E A\left(1+2 c^{3}\right)}$
Axial Force: $F^{(1)}=\frac{E A}{L / c} d=\frac{H}{2 s}+\frac{P c^{2}}{\left(1+2 c^{3}\right)}$
Element 2:

$$
\begin{gathered}
{\left[\begin{array}{c}
u_{x 1}^{-} \\
u_{y 1}^{-} \\
u_{\bar{x} 3} \\
u_{y 3}^{-}
\end{array}\right]=\left[\begin{array}{cccc}
-0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 3} \\
u_{y 3}
\end{array}\right]} \\
{\left[\begin{array}{c}
u_{x 1}^{-} \\
u_{\bar{y} 1}^{-} \\
u_{x 3}^{-} \\
u_{y 3}^{-}
\end{array}\right]=\left[\begin{array}{c}
-\frac{P L}{E A\left(1+c^{3}\right)} \\
-\frac{H L}{2 E A c s^{2}} \\
0 \\
0
\end{array}\right]}
\end{gathered}
$$

Elongation: $d=-u_{x 1}^{-}=\frac{P L}{E A\left(1+2 c^{3}\right)}$
Axial Force: $F^{(2)}=\frac{E A}{L} d=\frac{P}{\left(1+2 c^{3}\right)}$
Element 3:

$$
\begin{aligned}
& {\left[\begin{array}{l}
u_{x 1}^{-} \\
u_{y 1}^{-} \\
u_{x 4}^{-} \\
u_{y 4}^{-}
\end{array}\right]=\left[\begin{array}{cccc}
s & c & 0 & 0 \\
-c & s & 0 & 0 \\
0 & 0 & s & c \\
0 & 0 & -c & s
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]} \\
& {\left[\begin{array}{l}
u_{x 1}^{-} \\
u_{y 1}^{-} \\
u_{x 4}^{-} \\
u_{y 4}^{-}
\end{array}\right]=\left[\begin{array}{c}
\frac{H L}{2 E A c s}-\frac{P L c}{E A\left(1+2 c^{3}\right)} \\
-\frac{H L}{2 E A s^{2}}-\frac{P\left(1 s c^{3}\right)}{E A\left(1+2 c^{3}\right)} \\
0 \\
0
\end{array}\right]}
\end{aligned}
$$

Elongation: $d=-u_{x 1}^{-}=-\frac{H L}{2 E A c s}+\frac{P L c}{E A\left(1+2 c^{3}\right)}$
Axial Force: $F^{(3)}=\frac{E A}{L / c} d=-\frac{H}{2 s}+\frac{P c^{2}}{\left(1+2 c^{3}\right)}$
for $H \neq 0$ and $\alpha \rightarrow 0, \frac{H}{2 s} \rightarrow \frac{H}{2 \times 0} \rightarrow \infty$

Part 2

Figure 2: Four Bars Truss Problem

Each bar is considered as an element, numbered as shown in the figure 2. The angles with the horizontal for each element are the following:

$$
\begin{gathered}
\theta_{1}=0^{\circ} \\
\theta_{2}=90^{\circ} \\
\theta_{3-4}=45^{\circ}
\end{gathered}
$$

In this problem, there are 4 elements with 4 nodes, each node with 2 degrees of freedom. Therefore the result of the master stiffness equation will be a 8×8 matrix built with 4 stiffness matrices from the 4 bars.

Therefore the following matrices are obtained:
$K^{1}=\left(\frac{E A}{L}\right)^{1}\left[\begin{array}{cccc}s^{2} & -s c & -s^{2} & s c \\ -s c & c^{2} & s c & -c^{2} \\ -s^{2} & s c & s^{2} & -s c \\ s c & -c^{2} & -s c & c^{2}\end{array}\right]=10\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$K^{2}=5\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right]$
$K^{3}=K^{4}=40\left[\begin{array}{cccc}0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5\end{array}\right]$
Assembling these matrices in the global matrix, the resultant stiffness matrix is the following:

$$
K=\left[\begin{array}{cccccccc}
30 & 20 & -10 & 0 & 0 & 0 & -20 & -20 \\
& 20 & 0 & 0 & 0 & 0 & -20 & -20 \\
& & 10 & 0 & 0 & 0 & 0 & 0 \\
& & & 5 & 0 & -5 & 0 & 0 \\
& & & & 20 & 20 & -20 & -20 \\
& & & & & 25 & -20 & -20 \\
& & & & & & 40 & 40 \\
& & & & & & & 40
\end{array}\right]
$$

Each node has two degrees of freedom (in the x and y directions), therefore the deformation vector will be the following:

$$
u=\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]
$$

There are forces for each node in the x and y directions. In this cases, only two forces are applied on node 1, therefore the force vector will be the following:

$$
f=\left[\begin{array}{l}
0 \\
0 \\
0 \\
0 \\
2 \\
1 \\
0 \\
0
\end{array}\right]
$$

Putting the equation together:

\[

\]

Node 1 doesn't move, and node 2 only moves in the x direction therefore $u_{x 1}=u_{y 1}=u_{y 2}=0$

$$
u=\left[\begin{array}{c}
0 \\
0 \\
u_{x 2} \\
0 \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]
$$

Therefore, the reduced matrix equation will be the following:

$$
\left[\begin{array}{ccccc}
10 & 0 & 0 & 0 & 0 \\
0 & 20 & 20 & -20 & -20 \\
0 & 20 & 25 & -20 & -20 \\
0 & -20 & -20 & 40 & 40 \\
0 & -20 & -20 & 40 & 40
\end{array}\right]\left[\begin{array}{l}
u_{x 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
1 \\
0 \\
0
\end{array}\right]
$$

After the reduction, the matrix is still singular (column4=column5), therefore the equation is still not solvable.

This is due to the fact that a node is placed in the middle of a bar, with no restrictions on that node.

Nadim Saridar

Classwork

$$
\begin{aligned}
& E=200 \mathrm{GPa}=2 \times 10^{11} \mathrm{~Pa} \\
& A=6 \mathrm{~cm}^{2}=6 \times 10^{-4} \mathrm{~m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \text { Angles: (1) } 90^{\circ} \text { (2) } 0^{\circ} \\
& \begin{array}{l}
\text { (3) }-45^{\circ} \\
\text { (5) }-90^{\circ}
\end{array} \text { (45 } 45^{\circ}
\end{aligned}
$$

Elements' Lengths (1) (2) (5) $L=6 \mathrm{~m}$
(3) (4) $L=6 \sqrt{2} \mathrm{~m}$

a 4 nodes - 8 DoF
$K^{e}=\left(\frac{E A}{L}\right)^{e}=\left[\begin{array}{llll}c^{2} & s c & -c^{2} & -s c \\ s c & s^{2} & -s c & -s^{2} \\ -c^{2} & -s c & c^{2} & s c \\ -s c & -s^{2} & s c & s^{2}\end{array}\right] \quad \begin{aligned} & \left(\frac{E A}{L}\right)^{1,2,5}=2 \times 10^{7^{7}} \\ & \left(\frac{E A}{L}\right)^{3,4}=\sqrt{2} \times 10^{7}\end{aligned}$
$K^{1}=K^{5}=2 \times 10^{7}\left[\begin{array}{cccc}0 & 0 & 0 & 0 \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 0 & 0 \\ 0 & -1 & 0 & 1\end{array}\right] \quad K^{2}=2 \times 10^{7}\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 0 \\ -1 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
$K^{3}=\sqrt{2} \times 10^{7}\left[\begin{array}{cccc}0.5 & -0.5 & -0.5 & 0.5 \\ -0.5 & 0.5 & 0.5 & -0.5 \\ -0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & -0.5 & -0.5 & 0.5\end{array}\right] \quad K^{4}=\sqrt{2} \times 10^{7}\left[\begin{array}{cccc}0.5 & 0.5 & -0.5 & -0.5 \\ 0.5 & 0.5 & -0.5 & -0.5 \\ -0.5 & -0.5 & 0.5 & 0.5 \\ -0.5 & -0.5 & 0.5 & 0.5\end{array}\right]$

Each node has displacements in x and y, with nodes 1 and 4 that don't move, the displacement vector is the following.
$u=\left[\begin{array}{c}0 \\ 0 \\ u_{x_{2}} \\ u_{y_{2}} \\ u_{x_{3}} \\ u_{y_{3}} \\ 0 \\ 0\end{array}\right]$
Having one force in the x direction at node 2 $F=80 \mathrm{KN}=8 \times 10^{4} \mathrm{~N}$

The 8 equations will be reduced to 4

$$
\begin{aligned}
& 2 .\left[\begin{array}{ccc}
1.3536 & -0.3536 & -1 \\
\times 10^{7} & -0.3536 & 1.3536
\end{array}\right] \\
& 0.3536-1
\end{aligned}
$$

$$
\left[\begin{array}{l}
u x_{2} \\
u y_{2} \\
u_{x_{3}} \\
u_{y_{3}}
\end{array}\right]=\left[\begin{array}{c}
8.54 \\
2.23 \\
6.77 \\
-1.77
\end{array}\right] \mathrm{mm}
$$

