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Assignment 1.1 
 
On “The Direct Stiffness Method” 
 
Consider the truss problem defined in the figure 1.1. All geometric and material 
properties: L, α, E and A, as well as the applied forces P and H are to be kept as 
variables. This truss has 8 degrees of freedom, with six of them removable by the fixed-
displacement conditions at nodes 2, 3 and 4. This structure is statically indeterminate as 
long as α ≠ 0. 
 

 
Figure 1.1.- Truss structure. Geometry and mechanical features 

 
 
  



1. Show that the master stiffness equations are, 
 

 
 
in which c = cosα and s = sinα. Explain from physics why the 5th row and column 
contain only zeros. 

 
2. Apply the BC’s and show the 2-equation modified stiffness system. 
 
3. Solve for the displacements ux1 and uy1. Check that the solution makes physical 

sense for the limit cases α → 0 and α → π/2. Why does ux1 “blow up” if H≠0 and 
α→0? 

 
4. Recover the axial forces in the three members. Partial answer: F(3) = –H/(2s) + 

Pc2/(1+2c3). Why do F(1) and F(3) “blow up” if H≠0 and α→0? 
 
5. Dr. Who proposes “improving” the result for the example truss of the 1st lesson by 

putting one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided 
in two different members: (3) 1-4 and (4) 3-4. His “reasoning” is that more is 
better. Try Dr. Who’s suggestion by hand computations and verify that the solution 
“blows up” because the modified master stiffness is singular. Explain physically. 

 
 
 
Assignment 1.2 
 
Dr. Who proposes “improving” the result for the example truss of the 1st lesson by 
putting one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided in 
two different members: (3) 1-4 and (4) 3-4. His “reasoning” is that more is better. Try 
Dr. Who’s suggestion by hand computations and verify that the solution “blows up” 
because the modified master stiffness is singular. Explain physically. 
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Date of Submission:  12 / 02 / 2018 
 
The assignment must be submitted as a pdf file named As1-Surname.pdf to the 
CIMNE virtual center. 
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1 Assignment 1

1.1 Master stiffness equations

Consider the general expression for the elemental stiffness matrix and elemental
force vector for a pin-jointed element α degrees inclined with respect to the
horizontal axis:

Ke = CT K̃eC (1)

Where K̃e and C are the elemental stiffness in local axes and Rotation
matrix respectively:

K̃e =
EeAe

Le


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 ; R =


cφ sφ 0 0
−sφ cφ 0 0

0 0 cφ sφ
0 0 −sφ cφ

 (2)

with cφ = cos(φe) and sφ = sin(φe), where φe is the angle with respect to
the horizontal axis of element e.

The result of (1) yields the following stiffness matrix for each element:

Ke =
EeAe

Le


c2φ sφcφ −c2φ −sφcφ
sφcφ s2φ −sφcφ −s2φ
−c2φ −sφcφ c2φ sφcφ
−sφcφ −s2φ sφcφ s2φ

 (3)

Now, for computing the elemental stiffness matrices, we have to take into
account the values of Ae, Ee, Le and φe. The area A and Young’s modulues E
are constant for every element. Element 2 length is already given by the initial
data L2 = L, and as every superior node is located at the same horizontal line,
L1 and L3 can be expressed as L1 = L3 = L

cos(α) . Moreover, it can be seen that

the different angles φe can be also particularized as

φ1 =
π

2
+ α; φ2 =

π

2
; φ3 =

π

2
− α, (4)

and then:
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sin(φ1) = cos(α); cos(φ1) = −sin(α);

cos(φ2) = 0; sin(φ2) = 1;

sin(φ3) = cos(α); cos(φ3) = sin(α)

(5)

Substituting for these expressions and for the geometrical and material prop-
erties of each element into (3), we get the elemental matrices in the general axis:

K1 =
cEA

L


s2 −sc −s2 sc
−sc c2 sc −c2
−s2 sc s2 −sc
sc −c2 −sc c2



K2 =
EA

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



K3 =
cEA

L


s2 sc −s2 −sc
sc c2 −sc −c2
−s2 −sc s2 sc
−sc −c2 sc c2



(6)

Assembling the matrices according to the jointed nodes, we can see that the
general stiffness matrix is

K =
EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
symm 1 0 0

cs2 c2s
c3


(7)

And because the only external forces applied are done over node 1, the
system of equation becomes (positive forces if they have the positive direction
given by the axis), the system of equations given by the Direct Stiffness Method
is:
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Ku = F =
EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
symm 1 0 0

cs2 c2s
c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
0
0
0
0
0
0


The fifth row of the general stiffness matrix is full of zeros because it makes

reference to the horizontal actions acting on bar 2. As the bar is vertical, these
forces would create a bending moment, which cannot be possible given the fact
that the bar is pin-jointed (only axial forces allowed as internal forces).

1.2 Modified system

BC are null vertical and horizontal displacements at nodes 2,3 and 4 (ux2 = uy2

= ux3 = uy3 = ux4 = uy4 = ). The resulting system is a 2x2 matricial system:[
2cs2 0

0 1 + 2c3

] [
ux1
uy1

]
=

[
H
−P

]
(8)

1.3 Solve for ux1 and uy1

Inverting (8) we find the values of ux1 and uy1
ux1 =

H L

EA2cs2

uy1 =
−P L

EA(1 + 2c3)

(9)

For the limit case of α→ π
2 , c→ 0 and s→ 1 and so, the strain is almost null

(ux1L → 0), meaning that the horizontal displacement increases as the lengths
(or angles α)of bar 1 and 2 increase.

For the limit case of α→ 0, ux1 ”blows up” for H 6= 0 because the structure
becomes a system of vertical bars in the same position. As one of the two forces
applied is horizontal and all the bars are pin-jointed, we are inducing a rotation
in the system that does not cause any bending moment, so the system can rotate
freely whatever the value of H.
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1.4 Axial forces

Considering the equilibrium of forces at node 1 and the partial solution already
given the following system is obtained:

F1s− F3s = H

F1c+ F2 + F3c = P

F3 =
−H
2s

+
Pc2

1 + 2c3

(10)

With positive forces if the bar is experiencing tractions.

We can directly substitute F3 in the first equation to obtain F1 = H
2s+P c2

1+2c3

and then obtain F2 = P − c (F1 + F3) = P − c Pc2

2(1+2c3) .

We can see that for the limit case α → 0 axial forces F3 and F1 become
infinite unless H = 0. The reason is the same explained before: our model does
not handle bending moments.

2 Assignment 2

2.1 Include 1 more node. Explain solution

New bar 3 stiffness is two times higher than the original stiffness matrix for bar
3, as all directions and parameters remain the same except for the length, which
has halved. New bar 4 stiffness matrix is the opposite, as the bar has the same
characteristics but the orientation.

The stiffness matrices are

K1 =


10 0 −10 0
0 0 0 0
−10 0 10 0

0 0 0 0



K2 =


0 0 0 0
0 5 0 −5
0 0 0 0
0 −5 0 5



K3 = −K4 =


20 20 −20 −20
20 20 −20 −20
−20 −20 20 20
−20 −20 20 20



(11)
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Assembling them into K we find the new general stiffness matrix:

K =



30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
symm 25 −20 −20

40 40
40


(12)

Again, applying BC of null vertical displacements at nodes 1 and 2, and no
horizontal displacements at node 1, we eliminate rows and columns 1,2 and 4.
The following system is obtained, once the same process has been applied to
displacements and forces vectors:

10 0 0 0 0
20 20 −20 −20

symm 25 −20 −20
40 40

40



ux2
ux3
uy3
ux4
uy4

 =


0
fx3
fy3
0
0

 (13)

Mathematically speaking, the system is singular because its rank is lower than
its dimension (rows 4th and 5th are equal). Physically speaking, the system is
singular because we are creating a mechanism of 4 pin-jointed bars (see Figure
1). There are infinite configurations of this quadrilateral and thus, infinite
solutions to the problem.
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Figure 1: Scheme of the modified structure for Assignment 2. Element number-
ing between brackets
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