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1 Truss problem
Three bars are subject to forces P and H and are connected as seen on Figure 1.1.

The cross-sectional area A and elastic modulus E are the same for all bars. The bar (2)
has a length L, while bars (1) and (3) have length L/cos(α)

Figure 1.1: Problem geometry and discretization

1.1 Master stiffness equation
In order to achieve the master stiffness equation each bar must be evaluated locally

within their coordinates and then transferred to the global coordinates shown on Figure
1.1. Considering the local x-axis always to be aligned with the evaluated bar (with origin
on the local node 1) and taking into account Hooke’s law, we can write the local system
of equations relating displacements u and forces f (local variables are characterized by
the upper bar):

K̄
(e)
ū(e) =

E(e)A(e)

L(e)


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0



ū1x

ū1y

ū2x

ū2y

 = f̄ (1.1)

Knowing that ϕ is the inclination of the bar in relation to the global x-coordinate, the
coordinates transformation for the displacement vector is given by:
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ū(e) = L(e)u(e) =


cos(ϕ(e)) sin(ϕ(e)) 0 0
−sin(ϕ(e)) cos(ϕ(e)) 0 0

0 0 cos(ϕ(e)) sin(ϕ(e))
0 0 −sin(ϕ(e)) cos(ϕ(e))



uix

uiy

ujx

ujy

 (1.2)

where i and j are the global numbering of the nodes. The same procedure can be
done for the force vector and, since L(e) is an orthogonal matrix, equation 1.1 can be
written as:

f = L(e)TK̄
(e)
L(e)u(e) = K(e)u(e) (1.3)

For the given problem we have ϕ(1) = −(π
2
− α), ϕ(2) = π

2
and ϕ(3) = π

2
− α, thus,

using the notation c = cos(α) and s = sin(α), the stiffness matrix in global coordinates
for each bar is:

K(1) =
EAc

L


s2 −cs −s2 cs
−cs c2 cs −c2

−s2 cs s2 −cs
cs −c2 −cs c2

 (1.4)

K(2) =
EA

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 (1.5)

K(3) =
EAc

L


s2 cs −s2 −cs
cs c2 −cs −c2

−s2 −cs s2 cs
−cs −c2 cs c2

 (1.6)

To assemble them into the master stiffness matrix we take into account the global
node numbering displayed on Figure 1.1, yielding the global system of equations:

Ku =
EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
sym. c3





ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4


(1.7)
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The 5th column represent the effects of the x-coordinate of the displacement in the
node 3 on the internal forces of each bar. Thus, the coefficients can only be zero,
since node 3 is not connected to nodes 2 and 4 and it’s connected vertically to node 1.
Similarly, the 5th row, which represents the effects of the displacements in each node on
the internal x-coordinate forces of node 3, must also contain only zeros.

1.2 Boundary conditions
The truss system is fixed on the joints 2,3 and 4, thus we can state:

ux2 = uy2 = ux3 = uy3 = ux4 = uy4 = 0 (1.8)
This allows the reduction of the system of equations by eliminating the rows corre-

sponding to displacements that are already known and the columns which would be
multiplied by zero. Hence, the rows and columns from 3 to 8 are eliminated:

EA

L

[
2cs2 0
0 1 + 2c3

] [
ux1

uy1

]
=

[
H
−P

]
(1.9)

1.3 Displacements on node 1
The system presented on 1.9 yields the displacements:

ux1 =
HL

2EAcs2
(1.10)

uy1 = − PL

EA(1 + 2c3)
(1.11)

The equation found for the displacement on the y direction, given by equation 1.11,
satisfies the problem physically. For α → 0 all bars are aligned with coincident nodes
offering the highest resistance for deformation. Accordingly, it’s when equation 1.11
reaches its lowest value. Increasing α increases the displacement until its highest value
for α → π/2.

The equation found for the displacement on the x direction, although also meaningful
for intermediate values of α, has issues with the limit cases. This happens because it’s
senseless to calculate the displacement on the x direction for α → π/2, since it would
mean that bars (1) and (3) were infinite in length and horizontal. For α → 0, as stated
before, the bars would be aligned and jointed only on one point on the ceiling. Thus,
there would be no resistance for movement after imposing H ̸= 0 and there could be no
equilibrium. The bars would tend to rotate, therefore the solution “blows up”.
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1.4 Axial forces
The axial force F on each member is given by the Equation

F (e) =
E(e)A(e)

L(e)
d(e) (1.12)

where d is the elongation given by d(e) = ū
(e)
jx − ū

(e)
ix .

To return to the local coordinates we use the relation ū(e) = L(e)u(e), remembering
ϕ(1) = −(π

2
− α), ϕ(2) = π

2
and ϕ(3) = π

2
− α. Thus, for each bar we get:

ū(1) =


ū
(1)
x1

ū
(1)
y1

ū
(1)
x2

ū
(1)
y2

 =


s −c 0 0
c s 0 0
0 0 s −c
0 0 c s



ux2=0

uy2=0

ux1

uy1

 (1.13)

ū(2) =


ū
(2)
x1

ū
(2)
y1

ū
(2)
x2

ū
(2)
y2

 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




ux1

uy1

ux3 = 0
uy3 = 0

 (1.14)

ū(3) =


ū
(3)
x1

ū
(3)
y1

ū
(3)
x2

ū
(3)
y2

 =


s c 0 0
−c s 0 0
0 0 s c
0 0 −c s




ux1

uy1

ux4 = 0
uy4 = 0

 (1.15)

Consequently, the elongation for each bar is:

d(1) = (sux1 − cuy1)− 0 =
HL

2EAcs
+

PLc

EA(1 + 2c3)
(1.16)

d(2) = 0− uy1 =
PL

EA(1 + 2c3)
(1.17)

d(1) = 0− (sux1 + cuy1) = − HL

2EAcs
+

PLc

EA(1 + 2c3)
(1.18)

Thus, applying equation 1.12 yields:

F (1) =
H

2s
+

Pc2

(1 + 2c3)
(1.19)

F (2) =
P

(1 + 2c3)
(1.20)
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F (3) = −H

2s
+

Pc2

(1 + 2c3)
(1.21)

We note that the solution “blows up” for the bars 1 and 3 with α → 0. Physically,
this can be explained by the fact that the system cannot hold equilibrium for this
circumstance. No axial force can compensate a force H ̸= 0 if it’s perpendicular to all
bars, consequently the equilibrium solution tends to infinite, while physically the bars
would start rotating.
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2 Truss problem with extra node
A truss problem solved with 3 nodes is modified to have an extra node in the middle

of a bar as shown on Figure 2.1.

Figure 2.1: Problem geometry and discretization

Following the procedure of chapter 1, we obtain the stiffness matrix of each bar on
global coordinates:

K(1) = 10


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 (2.1)

K(2) = 5


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 (2.2)
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K(3) = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 (2.3)

K(4) = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 (2.4)

Now we can assemble the master stiffness matrix taking account the global node
numbering, yielding the following system:

Ku =



30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
25 −20 −20

40 40
sym. 40





ux1=0

uy1=0

ux2

uy2=0

ux3

uy3

ux4

uy4


(2.5)

As we can see, the global stiffness matrix is singular. The last two rows and columns
are a linear combination of themselves, thus the system cannot be solved. Physically it
makes no sense adding the new node, and consequently two new displacement variables,
because there are no additional boundary conditions related to it. In a truss system we
consider that the bars can only have an axial deformation and that forces are applied
at the nodes. With this configuration, the extra node adds no extra information, it is
known a priori that the displacement of the extra node will be a linear combination of
the displacements at the ends of the bar.
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