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1 ASSIGNMENT A): TRUSS STRUCTURE

PROBLEM DEFINITION

On “The Direct Stiffness Method”:

Consider the truss problem defined in the figure 1.1. All geometric and material properties:
L, α, E and A, as well as the applied forces P and H are to be kept as variables. This truss has
8 degrees of freedom, with six of them removable by the fixed-displacement conditions at
nodes 2, 3 and 4. This structure is statically indeterminate as long as α 6= 0.

Figure 1.1: Truss structure. Geometry and mechanical features

1.1 OBTAIN THE MASTER STIFFNESS EQUATIONS.

The Direct Stiffness Method (DSM) is based in systematic steps organized in two main phases.
The Breakdown phase, in which can be decomposed as:

a) Disconnection.

b) Localization.

c) Member Element Formation.

and Assembly and Solution phase which is formed by:

d) Globalization.
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e) Merge.

f) Application of BC’s.

g) Solution.

h) Recovery of derived quantities.

In order to obtain the master stiffness equations, first it is necessary to focus in the Break-
down phase in which the a) step is done by considering the figure 1.1 and separating each
bar.

As the problem definition states, the structure is formed by three bars that can be considered
as “Truss Elements” by following the Mechanics of Materials formulation. Now, the next steps
are referred to b) localization and c) member element formation, that can be done by using
the element stiffness matrix in local coordinates and considering the equivalent spring stiff-
ness by the Young’s Modulus “E”, the area and the length of each element.


f̄xi

f̄yi

f̄x j

f̄y j

= E A

L


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




ūxi

ūyi

ūx j

ūy j

 (1.1)

Now, the next phase begins with the globalization of the truss formulation and to do that it
is necessary to transform the local matrix 1.1 to a new one in a global system of coordinates
employing a rotation matrix defined by the angle of the bar. To obtain this global matrix it is
needed to pre-multiplicate the transpose of the rotation matrix with the stiffness matrix and
then post-multiplicate it again:

K e = (T e )T K̄ T e (1.2)

with:

T =


c s 0 0
−s c 0 0
0 0 c s
0 0 −s c

 (1.3)

Now, the global matrix of the truss element is:
fxi

fyi

fx j

fy j

 = E A

L


c2 sc −c2 −sc
sc s2 −sc −s2

−c2 −sc c2 sc
−sc −s2 sc s2




uxi

uyi

ux j

uy j

 (1.4)
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Now, particularizing the elemental global matrix for each bar of the problem we have:

• Bar 1

– Nodes: 1 - 2

– θ =−(90−α)

– cos(θ) = sin(α) =−s

– sin(θ) = cos(α) = c

– Area: A

– Young Modulus: E

– Length: L/cosα


fx1

fy1

fx2

fy2

 = E Ac

L


s2 −sc −s2 sc
−sc c2 sc −c2

−s2 sc s2 −sc
sc −c2 −sc c2




ux1

uy1

ux2

uy2

 (1.5)

• Bar 2

– Nodes: 1 - 3

– cos(α) = cos(90) = 0

– sin(α) = sin(90) = 1

– Area: A

– Young Modulus: E

– Length: L


fx1

fy1

fx3

fy3

 = E A

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1




ux1

uy1

ux3

uy3

 (1.6)

• Bar 3

– Nodes: 1 - 4

– θ = (90−α)

– cos(θ) = sin(α) = s

– sin(θ) = cos(α) = c

– Area: A

– Young Modulus: E

– Length: L/cosα


fx1

fy1

fx4

fy4

 = E Ac

L


s2 sc −s2 −sc
sc c2 −sc −c2

−s2 −sc s2 sc
−sc −c2 sc c2




ux1

uy1

ux4

uy4

 (1.7)
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Expanding the three matrices to the total of degrees of freedom and then adding them, we
obtain the global stiffness matrix which corresponds to the e) merge step. The result is:

E A

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1+2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

SY M cs2 c2s
c3





ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4


(1.8)

The matrix 1.8 corresponds exactly with the given by the problem. Now, to answer why the
5th row and column contain only zeros, first we have to take into account the numbering
given to the nodes of the structure. The 5th row and column corresponds to the 5th degree
of freedom of the whole structure which is the horizontal displacement of the 3rd node. As
we can observe in the figure 1.1, the node 3 is not connected to any bar, so topologically re-
viewing there is no connection of that degree of freedom with another one, that results in
zero elements added to the global matrix (in the 5th row and column because of the symme-
try of said global matrix). Physically analyzing, the node 3 is the direct support of the bar 2,
which is completely vertical, and as the truss matrix is implemented, this type of element just
can handle axial forces, that means that the elemental stiffness matrix should have zeros in
horizontal stiffness components, and do not can contribute to the global stiffness, as can be
observed.

1.2 APPLY THE BCS AND SHOW THE 2-EQUATIONS MODIFIED STIFFNESS SYSTEM.

The boundary conditions can be Dirichlet type or Neumann type. The first ones corresponds
to the imposed displacements (in solid mechanics), as it is observed in the figure 1.1, the node
2, 3 and 4 are constrained to zero displacement (horizontal and vertical), in other words, the
rows and columns corresponding to these equations in the global system can be deleted in
order to solve the problem. The Neumann BCs are related to the forces or fluxes in the system,
so in the problem the only node that has this BC is the node 1, which have a vertical force P
and an horizontal force H. So the system results in:

E A

L

[
2cs2 0

0 1+2c3

][
ux1

uy1

]
=

[
H
−P

]
(1.9)
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1.3 SOLVE FOR THE DISPLACEMENTS ux1 AND uy1.

The solution of the system of equations 1.9 is:[
ux1

uy1

]
=

[
HL/2E Acs2

−PL/E A(2c3 +1)

]
(1.10)

As it can be observed in the solution 1.10, both displacements are physically possible between
the two boundary values α→ 0 and α→ π/2. The first one corresponds at the time the two
inclined bars are getting closer to the vertical one. The problem in this limit case is such
that as the three bars are becoming parallel, and the support is not constrained to rotate,
the horizontal force is causing a huge displacement. The second case is when the bars are
perpendicular, in that case the problem it will not clearly proposed, because if the vertical
bar is still of length equal to L, the bars 1 and 3 would have a length equal to L/cos(π/2) =∞
which does not have a coherent physical solution. The next plots helps to understand the
horizontal and vertical displacements in node 1 due the variation of the angle α.

Figure 1.2: Horizontal displacement of node 1 due a variation of the angle α from 0 to π/2.

As explained above, the horizontal displacement ux1 “blows up” when α→ 0 because there
would be no equilibrium in the system as the structure will behave as a pendulus with no
restriction with the rotation on the ceiling support and with a horizontal force pushing the
bar in the node 1.
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Figure 1.3: Vertical displacement of node 1 due a variation of the angle α from 0 to π/2.

1.4 RECOVER THE AXIAL FORCES IN THE THREE MEMBERS.

To obtain the forces in each bar, first it can be obtained the displacements in the local system
of coordinates in each bar. In that sense, first it is needed to multiply the rotation matrix T by
the displacement vector:

• Bar 1


ūx1

ūy1

ūx2

ūy2

=


s −c 0 0
c s 0 0
0 0 s −c
0 0 c s




HL/2E Acs2

−PL/E A(2c3 +1)
0
0

=


HL/2E Acs +PLc/E A(2c3 +1)
HL/2E As2 −PLs/E A(2c3 +1)

0
0


Then, the elongation in the bar 1 is defined as:

d (1) = ūx1 − ūx2 = HL/2E Acs +PLc/E A(2c3 +1)−0 = HL

2E Acs
+ PLc

E A(2c3 +1)

The axial force is given by the next expression:

F (e) = E (e) A(e)

L(e)
d (e) (1.11)

So, using this equation, the axial force in bar 1 is:
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F (1) = E Ac

L
d (1) = H

2s
+ Pc2

2c3 +1

• Bar 2


ūx1

ūy1

ūx3

ūy3

=


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0




HL/2E Acs2

−PL/E A(2c3 +1)
0
0

=


−PL/E A(2c3 +1)
−HL/2E Acs2

0
0


Then, the elongation in the bar 2 is defined as:

d (1) = ūy3 − ūy1 = 0− (−PL/E A(2c3 +1)) = PL

E A(2c3 +1)

Now, using the equation 1.11, the axial force in bar 2 is:

F (2) = E A

L
d (2) = P

2c3 +1

• Bar 3


ūx1

ūy1

ūx4

ūy4

=


s c 0 0
−c s 0 0
0 0 s c
0 0 −c s




HL/2E Acs2

−PL/E A(2c3 +1)
0
0

=


HL/2E Acs −PLc/E A(2c3 +1)
−HL/2E As2 −PLs/E A(2c3 +1)

0
0


Then, the elongation in the bar 3 is defined as:

d (3) = ūx4 − ūx1 = 0− (HL/2E Acs −PLc/E A(2c3 +1) = −HL

2E Acs
+ PLc

E A(2c3 +1)

Computing the axial force for the bar 3:

F (3) = E Ac

L
d (3) =− H

2s
+ Pc2

2c3 +1

The reason why F (1) and F (3) “blows up” if α → 0 and H 6= 0 is similar than the explained
above with the displacements. If α approximates to zero, the bars will be parallel to each
other, and because of the supports which can rotate, the perpendicular force H will cause a
system without equilibrium, i.e. the system will start to rotate.
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2 ASSIGNMENT B): THREE BARS WITH FOUR NODES

Consider the example of a truss with three bars and three nodes as in the 1st lesson. But, Dr.
Who’s proposed a “better” solution by adding a node as the figure 2.1 shows. To prove that
this suggestion does not works, the usual procedure is used to compute the displacements.

Figure 2.1: 3 Bar truss structure with 4 nodes. Geometry and mechanical features

First, computing the elemental matrices by using the equation 1.4:

• Bar 1

– Nodes: 1 - 2

– θ = 0

– cos(θ) = 1

– sin(θ) = 0

– EA=100

– Length=10


fx1

fy1

fx2

fy2

 = 10


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0




ux1

uy1

ux2

uy2


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• Bar 2

– Nodes: 2 - 3

– θ = 90

– cos(θ) = 0

– sin(θ) = 1

– EA=50

– Length=10


fx2

fy2

fx3

fy3

 = 5


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1




ux2

uy2

ux3

uy3


• Bar 3

– Nodes: 1 - 4

– θ = 45

– cos(θ) =p
2/2

– sin(θ) =p
2/2

– E A = 200
p

2

– Leng th = 5
p

2


fx1

fy1

fx4

fy4

 = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5




ux1

uy1

ux4

uy4


• Bar 4

– Nodes: 4 - 3

– θ = 45

– cos(θ) =p
2/2

– sin(θ) =p
2/2

– E A = 200
p

2

– Leng th = 5
p

2


fx4

fy4

fx3

fy3

 = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5




ux4

uy4

ux3

uy3


Assembling the global stiffness matrix:

30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
25 −20 −20

SY M 40 40
40





ux1

uy1

ux2

uy2

ux3

uy3

ux4

uy4


(2.1)
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Now, to determine if this system of equations can be solved, we can compute the determi-
nant and verify if it is equal to zero, if this is true the matrix is singular and can not be in-
verted. Now, another test can be done by doing gaussian elimination, and observing that the
last rows and columns have the same values, implementing this test will result in deleting a
complete equation. For that reason this matrix is singular.

Physically, this means that adding a middle node in a bar will give two degrees of freedom
on X and Y, moreover this node is not restricted to rotate. So, the structure will not be in
equilibrium at the time the 4th node is collocated. The only possible way to permit imple-
menting this suggestion is adding to this node proper boundary conditions to maintain the
equilibrium or by using a modified elemental matrix with no rotation allowed.
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