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1 Direct Stiffness Matrix : Assignment 1

Consider the truss problem defined in the figure 1. All geometric and material properties: L, α, E and
A, as well as the applied forces P and H are to be kept as variables. This truss has 8 degrees of freedom,
with six of them removable by the fixed displacement conditions at nodes 2, 3 and 4. This structure is
statically indeterminate as long as α 6= 0. Stiffness Equation

f = Ku (1)

where, f = nodal forces, K= stiffness matrix, u = nodal displacement

Figure 1: Truss structure. Geometry and mechanical features

(a) master stiffness matrix

Element stiffness matrix for element 1

k1 =
E1A1

L1


c2 sc −c2 −sc
sc s2 −sc −s2
−c2 sc c2 sc
−sc s2 sc s2

 (2)

where, c = cos(270 + α) and s = sin(270 + α)
but cos(270 + α) = sin(α) and sin(270 + α) = −cos(α),
E1 = E,A1 = A,L1 = L/cos(α)
therefore equation 1 becomes,

k1 =
EAc

L


s2 −sc −s2 sc
−sc c2 sc −c2
−s2 sc s2 −sc
sc −c2 −sc c2

 (3)
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where, c = cos(α), s = sin(α)
Similarly, Element stiffness matrix for element 2

k2 =
EA

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 −1

 (4)

Element stiffness matrix for element 3

k3 =
EAc

L


s2 sc −s2 −sc
sc c2 −sc −c2
−s2 −sc s2 sc
−sc −c2 sc c2

 (5)

Assemble equation (3), (4), (5) into global stiffness matrix and putting it in equation (1)

EA

L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
1 + 2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
Symm c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
0
0
0
0
0
0


(6)

The 5th column in the matrix represents displacement and forces in x direction at node 3. As from figure
1 we can see node 3 is only connected to bar 2 which is vertical, also element type used is truss element
which can only handle axial stresses. Thus, the horizontal component should be zero.

(b) Applying boundary conditions

Nodes 2, 3 and 4 are fixed so displacement at that nodes are zero.

ux2 = 0, uy2 = 0, ux3 = 0, uy3 = 0, ux4 = 0, uy4 = 0

applying Boundary conditions to equation (6)

EA

L

[
2cs2 0

0 1 + 2c3

] [
ux1
uy1

]
=

[
H
−P

]
(7)

(c) Solving for displacement

By solving system of equations obtained from equation (7),ux1
uy1

 =

 HL
2EAcs2

− PL
EA(1+2c3)

 (8)

Case 1: if α −→ 0, c→1 and s→0. by considering equation (8) ux1 will go to infinity acting like a pendulum
causing whole equation to ’blow up’ thus H should be equal to zero in this case.

Case 2: if α −→ π/2, c→ 1 and s→ 0 the bar 1 and 3 will tend to go horizontal going near to wall
and will deform minimum.

(d) Axial Forces in members

Axial force is determined by,

F e =
EeAe

Le
de (9)
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where de is elongation, de = ūejx − ūeix and Ūe = T eue

ū1 =


ū1x1
ū1y1
ū1x2
ū1y2

 =


s −c 0 0
c s 0 0
0 0 s −c
0 0 c s




0
0
ux1
uy1

 (10)

ū2 =


ū2x1
ū2y1
ū2x2
ū2y2

 =


0 1 0 0
−1 0 0 0
0 0 0 −1
0 0 −1 0



ux1
uy1
0
0

 (11)

ū3 =


ū3x1
ū3y1
ū3x2
ū3y2

 =


s c 0 0
−c s 0 0
0 0 s c
0 0 −c s



ux1
uy1
0
0

 (12)

d1 = (sux1 − cuy1)− 0 =
HL

2EAcs
+

PLc

EA(1 + 2c3)
(13)

d2 = 0− (−uy1)= PL
EA(1+2c3)

(14)

d3 = 0− (sux1 + cuy1) = − HL

2EAcs
+

PLc

EA(1 + 2c3)
(15)

Therefore,

F 1 =
H

2s
+

Pc2

1 + 2c3
(16)

F 2 =
P

1 + 2c3
(17)

F 3 = −H
2s

+
Pc2

1 + 2c3
(18)

As when α→ 0 solution ’blows up’ if H 6= 0, thus the axial forces doesn’t makeup to the external forces.

2 Assignment 2

Dr. Who proposes “improving” the result for the example truss of the 1st lesson by putting one extra
node, 4 at the midpoint of member (3) 1-3, so that it is subdivided in two different members: (3) 1-4 and
(4) 3-4. His “reasoning” is that more is better. Try Dr. Who’s suggestion by hand computations and
verify that the solution “blows up” because the modified master stiffness is singular. Explain physically.

consider the example in figure 2 Example,

K1 = 10


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 (19)

K2 = 5


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 (20)

K3 = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 (21)
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Figure 2: Truss structure. Geometry and mechanical features

K4 = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 (22)

Assemblying (19),(20),(21) and (22) into global stiffness matrix K = K1 + k2 +K3 +K4

30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
25 −20 −20

40 40
40





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



Fx1

Fy1

Fx2

Fy2

Fx3

Fy3

Fx4

Fy4


(23)

Boundary conditions,
Fx2 = 0, Fx3 = 2, Fy3 = 1, Fx4 = 0, Fy4 = 0
ux1 = 0, uy1 = 0, uy2 = 0 

10 0 0 0 0 0
0 0 20 20 −20 −20
0 −5 20 25 −20 −220
0 0 −20 −20 40 40
0 0 −20 −20 40 40



ux2
ux3
uy3
ux4
uy4

 =


0
2
1
0
0

 (24)

Inference: As from the reduced equation (24) it is observed that the last 2 rows and column of the matrix
representing 4th node makes the matrix singular and could not be solved moreover speaking physically
without proper boundary conditions at the 4th node the system will not be in equilibrium as there may
consist rotation movement also.
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