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Assignment I:

(a) The member stiffness equations in global coordinates can be written as:

f e = Keue (1)

And taking into account that:

ūe = T eue and f e = (T e)T f̄ e (2)

Inserting these expressions into f̄ e = K̄eūe and comparing with the member stiffness equa-
tions in global coordinates we find that the member stiffness in the global system (x, y) can
be computed from the member stiffness K̄e in the local system (x̄, ȳ) through the congruent
transformation

Ke = (T e)T K̄eT e (3)

In this case we have the following problem:

And if we define c = cosα and s = sinα we have,

K1 =
EAc

L


s2 −sc −s2 sc
−sc c2 sc −c2
−s2 sc s2 −sc
sc −c2 −sc c2

 (4)
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K2 =
EA

L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 −1

 (5)

K3 =
EAc

L


s2 sc −s2 −sc
sc c2 −sc −c2
−s2 −sc s2 sc
−sc −c2 sc c2

 (6)

Upon assembly the matrices (4), (5) and (6), the master stiffness matrix is:

Ku =
EA

L



2cs2 0 −cs2 sc2 0 0 −cs2 −sc2
1 + 2c3 sc2 −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

symm cs2 c2s
c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


(7)

The node 3 is not connected horizontally, it is only connected vertically to node 1 thus the
5th column must be zero because it represents the effects of the x-coordinate displacement
on node 3, as well the 5th row that represents the effects of the displacements in each node
on the internal x-coordinate forces of node 3.

(b) Apply the BCs and show the 2-equation modified stiffness system:

The system is fixed on nodes 2,3 and 4 so:

ux2 = 0;uy2 = 0;ux3 = 0;uy3 = 0;ux4 = 0;uy4 = 0 (8)

We can reduce the system by eliminating the rows of the displacements that we already
know and the columns that would be multiply by zero.
Then,

EA

L

[
2cs2 0

0 1 + 2c3

] [
ux1
uy1

]
=

[
fx1
fy1

]
=

[
H
−P

]
(9)

(c) Solve for the displacements ux1 and uy1. Check that the solution makes

physical sense for the limit cases α → 0 and α → π

2
. Why does ux1 blow up if

H 6= 0 and α→ 0?

Solvin the system we have that:
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ux1 =
HL

2cs2EA
(10)

uy1 = − PL

(1 + 2c3)EA
(11)

We have to remember that c = cosα and s = sinα.

Then, if α → 0 it means that c → 1, all bars will be aligned and the structure will offer
maximum resistance to deformation, this is consistent since (11) reaches its minimum value.

And if we have α→ π

2
, c→ 0 and (11) reaches its maximum value.

The equation for the displacement on the x direction (10) has issues with the limit cases.

When we calculate displacement on the x direction for α→ π

2
(it would mean that bars (1)

and (3) are horizontal) and for α→ 0 ( all bars would be aligned and vertical) the solution
blows up if H 6= 0.

(d) Recover the axial forces in the three members.

The axial force is given by:

F e =
EeAe

Le
de (12)

where de is the elongation: de = ūejx− ūeix Taking into acount that ūe = T eue for each element
we have:

ū1 =


ū1x1
ū1y1
ū1x2
ū1y2

 =


s −c 0 0
c s 0 0
0 0 s −c
0 0 c s




0
0
ux1
uy1

 (13)

ū2 =


ū2x1
ū2y1
ū2x2
ū2y2

 =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



ux1
uy1
0
0

 (14)

ū3 =


ū3x1
ū3y1
ū3x2
ū3y2

 =


s c 0 0
−c s 0 0
0 0 s c
0 0 −c s



ux1
uy1
0
0

 (15)

The elongation will be:

d1 = (sux1 − cuy1)− 0 =
HL

EA2cs
+

PLc

(1 + 2c3)EA
(16)
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d2 = 0− (−uy1) =
PL

(1 + 2c3)EA
(17)

d3 = 0− (sux1 + cuy1) = − HL

EA2cs
+

PLc

(1 + 2c3)EA
(18)

Finally the axial forces will be calculated by (12):

F 1 =
H

2s
+

Pc2

1 + 2c3
(19)

F 2 =
P

1 + 2c3
(20)

F 3 = −H
2s

+
Pc2

1 + 2c3
(21)

The solution ”blows up” when alpha tends to 0 and H is different from 0 for bars 1 and 3.
This is due to the fact that the system is not in equilibrium for this circumstance. There is
no axial force that can compensate H different from 0.
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Assignment II:

The stiffnes matrix for each element will be:

K1 = 10


1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

 (22)

K2 = 5


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

 (23)

K3 = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 (24)

K4 = 40


0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

 (25)

Upon assembly the matrices (22), (23), (24) and (25), the master stiffness matrix is:
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

30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
25 −20 −20

symm 40 40
40





ux1 = 0
uy1 = 0
ux2

uy2 = 0
ux3
uy3
ux4
uy4


=



fx1
fy1

fx2 = 0
fy2

fx3 = 2
fy3 = 1
fx4 = 0
fy4 = 0


(26)

We can reduce the system by eliminating the rows of the displacements that we already
know and the columns that would be multiply by zero:


10 0 0 0 0 0
0 0 20 20 −20 −20
0 −5 20 25 −20 −20
0 0 −20 −20 40 40
0 0 −20 −20 40 40



ux2
ux3
uy3
ux4
uy4

 =


0
2
1
0
0

 (27)

As we can see the last two rows and columns are equals, the matrix is singular and the
system can not be solved.

In this particular case we have that:

1. The bar properties are constant along the length

2. The only applied loads are point forces at the nodes.

Because of the foregoing conditions, we have a linear axial displacement u(x) and adding extra
elements and nodes would not change the solution. For this reason this truss discretization
is enough and if we add one more node the solution wont change.
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