Assignment I:

(a) The member stiffness equations in global coordinates can be written as:

$$
\begin{equation*}
f^{e}=K^{e} u^{e} \tag{1}
\end{equation*}
$$

And taking into account that:

$$
\begin{equation*}
\bar{u}^{e}=T^{e} u^{e} \quad \text { and } \quad f^{e}=\left(T^{e}\right)^{T} \bar{f}{ }^{e} \tag{2}
\end{equation*}
$$

Inserting these expressions into $\bar{f}=\bar{K}^{e} \bar{u}^{e}$ and comparing with the member stiffness equations in global coordinates we find that the member stiffness in the global system (x, y) can be computed from the member stiffness \bar{K}^{e} in the local system (\bar{x}, \bar{y}) through the congruent transformation

$$
\begin{equation*}
K^{e}=\left(T^{e}\right)^{T} \bar{K}^{e} T^{e} \tag{3}
\end{equation*}
$$

In this case we have the following problem:

And if we define $c=\cos \alpha$ and $s=\sin \alpha$ we have,

$$
K^{1}=\frac{E A c}{L}\left[\begin{array}{cccc}
s^{2} & -s c & -s^{2} & s c \tag{4}\\
-s c & c^{2} & s c & -c^{2} \\
-s^{2} & s c & s^{2} & -s c \\
s c & -c^{2} & -s c & c^{2}
\end{array}\right]
$$

$$
\begin{gather*}
K^{2}=\frac{E A}{L}\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & -1
\end{array}\right] \tag{5}\\
K^{3}=\frac{E A c}{L}\left[\begin{array}{cccc}
s^{2} & s c & -s^{2} & -s c \\
s c & c^{2} & -s c & -c^{2} \\
-s^{2} & -s c & s^{2} & s c \\
-s c & -c^{2} & s c & c^{2}
\end{array}\right] \tag{6}
\end{gather*}
$$

Upon assembly the matrices (4), (5) and (6), the master stiffness matrix is:

$$
K u=\frac{E A}{L}\left[\begin{array}{cccccccc}
2 c s^{2} & 0 & -c s^{2} & s c^{2} & 0 & 0 & -c s^{2} & -s c^{2} \tag{7}\\
& 1+2 c^{3} & s c^{2} & -c^{3} & 0 & -1 & -c^{2} s & -c^{3} \\
& & c s^{2} & -c^{2} s & 0 & 0 & 0 & 0 \\
& & & c^{3} & 0 & 0 & 0 & 0 \\
& & & & 0 & 0 & 0 & 0 \\
& \text { symm } & & & & 1 & 0 & 0 \\
& & & & & & & c s^{2} \\
c^{2} s \\
& & & & & & c^{3}
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1} \\
u_{x 2} \\
u_{y 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]
$$

The node 3 is not connected horizontally, it is only connected vertically to node 1 thus the 5th column must be zero because it represents the effects of the x-coordinate displacement on node 3 , as well the 5th row that represents the effects of the displacements in each node on the internal x-coordinate forces of node 3 .

(b) Apply the BCs and show the 2-equation modified stiffness system:

The system is fixed on nodes 2,3 and 4 so:

$$
\begin{equation*}
u_{x 2}=0 ; u_{y 2}=0 ; u_{x 3}=0 ; u_{y 3}=0 ; u_{x 4}=0 ; u_{y 4}=0 \tag{8}
\end{equation*}
$$

We can reduce the system by eliminating the rows of the displacements that we already know and the columns that would be multiply by zero.
Then,

$$
\frac{E A}{L}\left[\begin{array}{cc}
2 c s^{2} & 0 \tag{9}\\
0 & 1+2 c^{3}
\end{array}\right]\left[\begin{array}{l}
u_{x 1} \\
u_{y 1}
\end{array}\right]=\left[\begin{array}{c}
f_{x 1} \\
f_{y 1}
\end{array}\right]=\left[\begin{array}{c}
H \\
-P
\end{array}\right]
$$

(c) Solve for the displacements $u_{x 1}$ and $u_{y 1}$. Check that the solution makes physical sense for the limit cases $\alpha \rightarrow 0$ and $\alpha \rightarrow \frac{\pi}{2}$. Why does $u_{x 1}$ blow up if $H \neq 0$ and $\alpha \rightarrow 0$?

Solvin the system we have that:

$$
\begin{gather*}
u_{x 1}=\frac{H L}{2 c s^{2} E A} \tag{10}\\
u_{y 1}=-\frac{P L}{\left(1+2 c^{3}\right) E A} \tag{11}
\end{gather*}
$$

We have to remember that $c=\cos \alpha$ and $s=\sin \alpha$.
Then, if $\alpha \rightarrow 0$ it means that $c \rightarrow 1$, all bars will be aligned and the structure will offer maximum resistance to deformation, this is consistent since (11) reaches its minimum value. And if we have $\alpha \rightarrow \frac{\pi}{2}, c \rightarrow 0$ and (11) reaches its maximum value.

The equation for the displacement on the x direction (10) has issues with the limit cases. When we calculate displacement on the x direction for $\alpha \rightarrow \frac{\pi}{2}$ (it would mean that bars (1) and (3) are horizontal) and for $\alpha \rightarrow 0$ (all bars would be aligned and vertical) the solution blows up if $H \neq 0$.

(d) Recover the axial forces in the three members.

The axial force is given by:

$$
\begin{equation*}
F^{e}=\frac{E^{e} A^{e}}{L^{e}} d^{e} \tag{12}
\end{equation*}
$$

where d^{e} is the elongation: $d^{e}=\bar{u}_{j x}^{e}-\bar{u}_{i x}^{e}$ Taking into acount that $\bar{u}^{e}=T^{e} u^{e}$ for each element we have:

$$
\begin{align*}
& \bar{u}^{1}=\left[\begin{array}{c}
\bar{u}_{x 1}^{1} \\
\bar{u}_{y 1}^{1} \\
\bar{u}_{x 2}^{1} \\
\bar{u}_{y 2}^{1}
\end{array}\right]=\left[\begin{array}{cccc}
s & -c & 0 & 0 \\
c & s & 0 & 0 \\
0 & 0 & s & -c \\
0 & 0 & c & s
\end{array}\right]\left[\begin{array}{c}
0 \\
0 \\
u_{x 1} \\
u_{y 1}
\end{array}\right] \tag{13}\\
& \bar{u}^{2}=\left[\begin{array}{c}
\bar{u}_{x 1}^{2} \\
\bar{u}_{y 1}^{2} \\
\bar{u}_{x 2}^{2} \\
\bar{u}_{y 2}^{2}
\end{array}\right]=\left[\begin{array}{cccc}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0
\end{array}\right]\left[\begin{array}{c}
u_{x 1} \\
u_{y 1} \\
0 \\
0
\end{array}\right] \tag{14}\\
& \bar{u}^{3}=\left[\begin{array}{c}
\bar{u}_{x 1}^{3} \\
\bar{u}_{y 1}^{3} \\
\bar{u}_{x 2}^{3} \\
\bar{u}_{y 2}^{3}
\end{array}\right]=\left[\begin{array}{cccc}
s & c & 0 & 0 \\
-c & s & 0 & 0 \\
0 & 0 & s & c \\
0 & 0 & -c & s
\end{array}\right]\left[\begin{array}{c}
u_{x 1} \\
u_{y 1} \\
0 \\
0
\end{array}\right] \tag{15}
\end{align*}
$$

The elongation will be:

$$
\begin{equation*}
d^{1}=\left(s u_{x 1}-c u_{y 1}\right)-0=\frac{H L}{E A 2 c s}+\frac{P L c}{\left(1+2 c^{3}\right) E A} \tag{16}
\end{equation*}
$$

$$
\begin{gather*}
d^{2}=0-\left(-u_{y 1}\right)=\frac{P L}{\left(1+2 c^{3}\right) E A} \tag{17}\\
d^{3}=0-\left(s u_{x 1}+c u_{y 1}\right)=-\frac{H L}{E A 2 c s}+\frac{P L c}{\left(1+2 c^{3}\right) E A} \tag{18}
\end{gather*}
$$

Finally the axial forces will be calculated by (12):

$$
\begin{gather*}
F^{1}=\frac{H}{2 s}+\frac{P c^{2}}{1+2 c^{3}} \tag{19}\\
F^{2}=\frac{P}{1+2 c^{3}} \tag{20}\\
F^{3}=-\frac{H}{2 s}+\frac{P c^{2}}{1+2 c^{3}} \tag{21}
\end{gather*}
$$

The solution "blows up" when alpha tends to 0 and H is different from 0 for bars 1 and 3 . This is due to the fact that the system is not in equilibrium for this circumstance. There is no axial force that can compensate H different from 0 .

Assignment II:

The stiffnes matrix for each element will be:

$$
\begin{gather*}
K^{1}=10\left[\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \tag{22}\\
K^{2}=5\left[\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 0 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \tag{23}\\
K^{3}=40\left[\begin{array}{cccc}
0.5 & 0.5 & -0.5 & -0.5 \\
0.5 & 0.5 & -0.5 & -0.5 \\
-0.5 & -0.5 & 0.5 & 0.5 \\
-0.5 & -0.5 & 0.5 & 0.5
\end{array}\right] \tag{24}\\
K^{4}=40\left[\begin{array}{cccc}
0.5 & 0.5 & -0.5 & -0.5 \\
0.5 & 0.5 & -0.5 & -0.5 \\
-0.5 & -0.5 & 0.5 & 0.5 \\
-0.5 & -0.5 & 0.5 & 0.5
\end{array}\right] \tag{25}
\end{gather*}
$$

Upon assembly the matrices $(22),(23),(24)$ and (25), the master stiffness matrix is:

$$
\left[\begin{array}{cccccccc}
30 & 20 & -10 & 0 & 0 & 0 & -20 & -20 \tag{26}\\
& 20 & 0 & 0 & 0 & 0 & -20 & -20 \\
& & 10 & 0 & 0 & 0 & 0 & 0 \\
& & & 5 & 0 & -5 & 0 & 0 \\
& & & & 20 & 20 & -20 & -20 \\
& & & & & 25 & -20 & -20 \\
& & & & & 40 & 40 \\
& & & & & & 40
\end{array}\right]\left[\begin{array}{c}
u_{x 1}=0 \\
u_{y 1}=0 \\
u_{x 2} \\
u_{y 2}=0 \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]=\left[\begin{array}{c}
f_{x 1} \\
f_{y 1} \\
f_{x 2}=0 \\
f_{y 2} \\
f_{x 3}=2 \\
f_{y 3}=1 \\
f_{x 4}=0 \\
f_{y 4}=0
\end{array}\right]
$$

We can reduce the system by eliminating the rows of the displacements that we already know and the columns that would be multiply by zero:

$$
\left[\begin{array}{cccccc}
10 & 0 & 0 & 0 & 0 & 0 \tag{27}\\
0 & 0 & 20 & 20 & -20 & -20 \\
0 & -5 & 20 & 25 & -20 & -20 \\
0 & 0 & -20 & -20 & 40 & 40 \\
0 & 0 & -20 & -20 & 40 & 40
\end{array}\right]\left[\begin{array}{l}
u_{x 2} \\
u_{x 3} \\
u_{y 3} \\
u_{x 4} \\
u_{y 4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
2 \\
1 \\
0 \\
0
\end{array}\right]
$$

As we can see the last two rows and columns are equals, the matrix is singular and the system can not be solved.

In this particular case we have that:

1. The bar properties are constant along the length
2. The only applied loads are point forces at the nodes.

Because of the foregoing conditions, we have a linear axial displacement $\mathrm{u}(\mathrm{x})$ and adding extra elements and nodes would not change the solution. For this reason this truss discretization is enough and if we add one more node the solution wont change.

