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Assignment 1.1

On “The Direct Stiffness Method”:

Consider the truss problem defined in the Figure. All geometric and material prop-
erties: L,α,E and A, as well as the applied forces P and H , are to be kept as vari-
ables. This truss has 8 degrees of freedom, with six of them removable by the fixed-
displacement conditions at nodes 2, 3 and 4. This structure is statically indetermi-
nate as long as α , 0.

(a) Show that the master stiffness equations are

EA
L



2cs2 0 −cs2 c2s 0 0 −cs2 −cs2
1+2c3 c2s −c3 0 −1 −c2s −c3

cs2 −c2s 0 0 0 0
c3 0 0 0 0

0 0 0 0
1 0 0

cs2 c2s
symm c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
0
0
0
0
0
0


in which c = cos α and s = sin α. Explain from physics why the 5th row and column
contain only zeros.

Solution: For a given coordinate system, the (4 × 4) stiffness matrix of a truss ele-
ment at an angle α, with each node having 2 degrees of freedom is given by:

Ke =
EeAe

Le


c2 sc −c2 −sc
sc s2 −sc −s2
−c2 −sc c2 sc
−sc −s2 sc s2


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Considering the angle measurement in the counter-clockwise direction as a general
convention, the three elements in this truss problem form the following angles with
the global x-coordinate.

Element Angle sin (Angle) cos (Angle)

1 π/2+α cos α -sin α
2 π/2 1 0
3 π/2−α cos α sin α

Since we consider c = cos α and s = sin α, we know by trigonometry that the length
of element 1 and element 3 are given as, L(1) = L(3) = L/c and L(2) = L. Hence
with the known material and geometric properties, we write the element stiffness
matrices as,

K(1) =
EAc
L


s2 −cs −s2 cs
−cs c2 cs −c2
−s2 cs s2 −cs
cs −c2 −cs c2



K(2) =
EA
L


0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1



K(3) =
EAc
L


s2 cs −s2 −cs
cs c2 −cs −c2
−s2 −cs s2 cs
−cs −c2 cs c2


Now, to assemble the global stiffness matrix of the system, we need to augment the
element stiffness matrices to the same size as the global stiffness matrix. Given that
the truss problem has 8 degrees of freedom, we get the following element stiffness
matrices,

K(1) =
EA
L



cs2 −c2s −cs2 c2s 0 0 0 0
−c2s c3 c2s −c3 0 0 0 0
−cs2 c2s cs2 −c2s 0 0 0 0
c2s −c3 −c2s c3 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0


3
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K(2) =
EA
L



0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0



K(3) =
EA
L



cs2 c2s 0 0 0 0 −cs2 −c2s
c2s c3 0 0 0 0 −c2s −c3
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−cs2 −c2s 0 0 0 0 cs2 c2s
−c2s −c3 0 0 0 0 c2s c3


The augmentation of the element matrices makes the assembly process very easy, as
we just need to add the three matrices to get the global stiffness matrix as,

K =
EA
L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
0 1+2c3 c2s −c3 0 −1 −c2s −c3
−cs2 c2s cs2 −c2s 0 0 0 0
c2s −c3 −c2s c3 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
−cs2 −c2s 0 0 0 0 cs2 c2s
−c2s −c3 0 0 0 0 c2s c3


The obtained global stiffness matrix is the same as suggested in the problem. Con-
sidering the direction of the applied forces, the master stiffness equations are given
as,

EA
L



2cs2 0 −cs2 c2s 0 0 −cs2 −c2s
0 1+2c3 c2s −c3 0 −1 −c2s −c3
−cs2 c2s cs2 −c2s 0 0 0 0
c2s −c3 −c2s c3 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
−cs2 −c2s 0 0 0 0 cs2 c2s
−c2s −c3 0 0 0 0 c2s c3





ux1
uy1
ux2
uy2
ux3
uy3
ux4
uy4


=



H
−P
0
0
0
0
0
0


(1)

4
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We also notice that the 5th row and column of the matrix contain only zeros. This
behaviour can be explained by looking at few features of a truss.

• A truss element can be subjected only to axial loading at the two ends.

• A truss element cannot undergo shear or moment.

• Deformation in a truss element is along the axial direction only.

Considering these features of a truss element, we see that element 2 is pin-jointed
at node 3 and can only deform in the axial direction i.e. along the global vertical
direction. This means the contribution of node 3 in the horizontal displacement is
zero which makes the corresponding 5th row and column as null. It is interesting
to note that this behaviour is only observed for element 2 because it is aligned with
the global axis, whereas the other truss elements are inclined at an angle with the
global axis.

(b) Apply the BCs and show the 2-equation modified stiffness system.

Solution: In the given problem, the truss elements are pin-jointed at nodes 2, 3
and 4, which results in zero displacement in both horizontal and vertical directions.
These known displacements ux2 = 0, uy2 = 0, ux3 = 0, uy3 = 0, ux4 = 0, uy4 = 0,
form the boundary conditions (BCs) of the problem. On application of these BCs,
we can remove the corresponding rows to these displacements from equation 1. The
system of equations can be further reduced by removing the corresponding columns
since the known displacements are equal to zero. This leaves us with a modified
stiffness system with only ux1 and uy1 as the unknowns given as,

EA
L

[
2cs2 0
0 1+2c3

] [
ux1
uy1

]
=

[
H
−P

]
(2)

(c) Solve for the displacements ux1 and uy1. Check that the solution makes physical
sense for the limit cases α→ 0 and α→ π/2. Why does ux1 “blow up” if H , 0 and
α→ 0?

Solution: Solving the modified stiffness system as given in equation 2, we get,[
ux1
uy1

]
=

L
EA

[
1/(2cs2) 0

0 1/(1 + 2c3)

] [
H
−P

]
[
ux1
uy1

]
=

[
HL/(2EAcs2)

−P L/(EA(1 + 2c3))

]
(3)

As α→ 0, c→ 1 and s→ 0. Therefore,[
ux1
uy1

]
=

[
HL/0

−P L/(3EA)

]
5
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This makes physical sense since α→ 0 means that the three bars are pointing down-
wards which is equivalent to a single bar with three times the area pin-jointed at
one end and vertical load P applied at the free end. This gives us an axial stiffness
of 3EA/L which is evident in the expression of uy1.

If H , 0, the solution completely ‘blows up’ as ux1→∞. The reduced stiffness matrix
becomes singular as the pin-jointed support does not withstand the moment created
by the horizontal force, allows free rotations and makes it a mechanism giving an
undefined solution. This can also be explained by looking at the features of a truss
element (specified in part (a)) which states that a truss cannot undergo shear or mo-
ment and deformation can only take place along the axial direction giving another
reason for the solution to blow up in this case.

Now, as α→ π/2, c→ 0 and s→ 1. Therefore,[
ux1
uy1

]
=

[
HL/0
−P L/(EA)

]
This is because, with α → π/2, the two bars are parallel to the top surface of the
structure making the length L(1) = L(3) = L/c→∞ which corresponds to the case of
a single bar pin-jointed at one end and vertical load P applied at the free end. This
gives us an axial stiffness of EA/L evident in the expression of uy1 and an undefined
solution in the horizontal direction.

(d) Recover the axial forces in the three members. Partial answer: F(3) = −H/(2s)+
P c2/(1 + 2c3). Why do F(1) and F(3) “blow up” if H , 0 and α→ 0?

Solution: To recover the axial forces of the three elements in their local axes, first
we need to find the local displacements using the obtained global displacements.
This is done by using the rotation matrix T given as,

T =


c s 0 0
−s c 0 0
0 0 c s
0 0 −s c


For element 1:

Global displacements,

u(1) =


ux1
uy1
ux2
uy2

 =


ux1
uy1
0
0


Local displacements are given as,

u(1) = T(1)u(1)

6
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u(1) =


−s c 0 0
−c −s 0 0
0 0 −s c
0 0 −c −s



ux1
uy1
0
0

 =

−sux1 + cuy1
−cux1 − suy1

0
0


Now, deformation

d(1) = ux2 −ux1 = sux1 − cuy1

Using the results from equation 3, we get,

d(1) =
HL

2EAcs
+

P Lc

EA(1 + 2c3)

Using the Force-deformation relationship, we get the axial force as,

F(1) =
EA

L(1)
d(1) =

EAc
L

[ HL
2EAcs

+
P Lc

EA(1 + 2c3)

]

F(1) =
H
2s

+
P c2

(1 + 2c3)
(4)

For element 2:

Global displacements,

u(2) =


ux1
uy1
ux3
uy3

 =


ux1
uy1
0
0


Local displacements are given as,

u(2) = T(2)u(2)

u(2) =


0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0



ux1
uy1
0
0

 =

uy1
−ux1
0
0


Now, deformation

d(2) = ux3 −ux1 = −uy1

Using the results from equation 3 again, we get,

d(2) =
P L

EA(1 + 2c3)

7
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Using the Force-deformation relationship, we get the axial force as,

F(2) =
EA

L(2)
d(2) =

EA
L

[ P L

EA(1 + 2c3)

]

F(2) =
P

(1 + 2c3)
(5)

For element 3:

Global displacements,

u(3) =


ux1
uy1
ux4
uy4

 =


ux1
uy1
0
0


Local displacements are given as,

u(3) = T(3)u(3)

u(3) =


s c 0 0
−c s 0 0
0 0 s c
0 0 −c s



ux1
uy1
0
0

 =

sux1 + cuy1
−cux1 + suy1

0
0


Now, deformation

d(3) = ux4 −ux1 = −sux1 − cuy1

Using the results from equation 3, we get,

d(3) = − HLs

2EAcs2
+

P Lc

EA(1 + 2c3)

Using the Force-deformation relationship, we get the axial force as,

F(3) =
EA

L(3)
d(3) =

EAc
L

[
− HLs

2EAcs2
+

P Lc

EA(1 + 2c3)

]

F(3) = −H
2s

+
P c2

(1 + 2c3)
(6)

We notice again, that when α→ 0, c→ 1 and s→ 0. This makes the the axial forces
F(1) and F(3) to blow up since the three bars can be effectively considered a single
bar with area 3A with an axial stiffness of 3EA/L. It is also seen that if H = 0, the
total force is divided equally by each bar under tensile load P /3. But if H , 0, both
F(1) and F(3) gives undefined solution due to the pin-jointed support at the top not
withstanding moment and making it a mechanism.

8
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Assignment 1.2

Dr. Who proposes “improving” the result for the example truss of the 1st lesson by
putting one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided
in two different members: (3) 1-4 and (4) 3-4. His “reasoning” is that more is better.
Try Dr. Who’s suggestion by hand computations and verify that the solution “blows
up” because the modified master stiffness is singular. Explain physically.

Solution: Firstly, addition of an extra node at the midpoint of element 3 as shown
in the figure does not affect the inclination angles of the truss elements.

Thus, the elemental stiffness matrices for element 1 and 2 remains same with in-
crease in the total degrees of freedom to 10. Hence, the augmented element stiffness
matrices are given as,

K(1) =
EA
L



cs2 −c2s −cs2 c2s 0 0 0 0 0 0
−c2s c3 c2s −c3 0 0 0 0 0 0
−cs2 c2s cs2 −c2s 0 0 0 0 0 0
c2s −c3 −c2s c3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


9
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K(2) =
EA
L



0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0



Also, the new elements 3 and 4 are half in length of the original element 3 i.e. L(3)

= L(4) = L/(2c) resulting in similar stiffness matrices given as,

K(3) =
2EA
L



cs2 c2s 0 0 0 0 −cs2 −c2s 0 0
c2s c3 0 0 0 0 −c2s −c3 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
−cs2 −c2s 0 0 0 0 cs2 c2s 0 0
−c2s −c3 0 0 0 0 c2s c3 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0


and,

K(4) =
2EA
L



0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 cs2 c2s −cs2 −c2s
0 0 0 0 0 0 c2s c3 −c2s −c3
0 0 0 0 0 0 −cs2 −c2s cs2 c2s
0 0 0 0 0 0 −c2s −c3 c2s c3


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Upon assembly, the global stiffness matrix is given as,

K =
EA
L



3cs2 c2s −cs2 c2s 0 0 −2cs2 −2c2s 0 0
c2s 3c3 +1 c2s −c3 0 −1 −2c2s −2c3 0 0
0 0 0 0 0 0 0 0 0 0
−cs2 c2s cs2 −c2s 0 0 0 0 0 0
c2s −c3 −c2s c3 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
−2cs2 −2c2s − 1 0 0 0 1 4cs2 4c2s −2cs2 −2c2s
−2c2s −2c3 0 0 0 0 4c2s 4c3 −2c2s −2c3
0 0 0 0 0 0 −2cs2 −2c2s 2cs2 2c2s
0 0 0 0 0 0 −2c2s −2c3 2c2s 2c3


It is interesting to note that Dr. Who’s reasoning of adding an extra node doesn’t
make any difference in the 5th row and column of the global stiffness matrix which
are still null as explained earlier. Now, in order to solve the stiffness equations we
impose boundary conditions. Since the truss elements are pin-jointed at nodes 2, 3
and 5, we get the reduced stiffness system corresponding to unknowns ux1, uy1, ux4
and uy4 as,

EA
L


3cs2 c2s −2cs2 −2c2s
c2s 3c3 +1 −2c2s −2c3
−2cs2 −2c2s − 1 4cs2 4c2s
−2c2s −2c3 4c2s 4c3



ux1
uy1
ux4
uy4

 =


H
−P
0
0

 (7)

We observe that the stiffness matrix of the reduced system is singular, therefore
the system of equations are not compatible and there is no distinct solution to the
problem. Physically, this is because the structure is not fully constrained in space and
behaves like a mechanism. This condition known as rigid body motion implies that
with little perturbation, the system becomes unstable in nature. Hence, Dr. Who’s
proposal of inserting an extra node in the middle of an element is ineffective since
a truss element can only be subjected to axial loading and his reasoning of more is
better will not make any difference.
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