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1.1.1:
Given:
P,H L E A«
BC:
Uy, = Uy, = Uy, =0
Uy, = Uy, = Uy, = 0
c = cosa,s = sina
Searched:

Show that the master stiffness equations are
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explain from physics why the 5th row and column contains only zeros.

Solution:

In a truss member the following relationship is true
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which concluded in matrix form becomes
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This results in the local stiffness matrices
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Choosing local coordinates the local x-axis should be aligned with the truss member. To
make the problem as simple as possible it is also recommended to choose the directions of
the local x- and y-axis yielding the smallest possible angle of deviation from the global x- and
y-axis. The following local coordinates are chosen for the three members.

E and A4 same for
all three bars

The chosen local coordinates result in relationships between local and global displacements
and forces. Using

c = cosa, s = sina

the displacement relationship for member (1) becomes
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and the force relationship



x1
s ¢ 0 O
(1 7(1)
fy1 _|—¢ s 0 O fyl
1 (1
fx(Z) 0 0 o ¢ fx(z)
(1) 0 0 —c s (1)
_fyz fy2
For member (2) the relationships become
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Lastly for member (3) the relationships become
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Using the relationships

F© = T@f@)

71(© = Ty

RO7© = f©
the global stiffness matrix can be expressed in terms of the local stiffness matrix and the
transformation matrix as follows:

KOT@u®© = 1) @
(T©) REOT@y@ = f©



K©Ou®© = f@©
K@ — (T(e))TI—((e)T(e)_

Using the calculated transformation and stiffness matrices the following global stiffness
matrices are recieved:
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For a hand written assembly the stiffness matrices are expanded to make the process easier.
The expanded matrices result in the following systems for member (1), (2) and (3):
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The local displacements u,(cf) can be written in global form using the compability

W =l = =

v _ @ _ .06 _
Uy, = Uy, = Uy, = Uy,

resulting in the master stiffness equations



X1

f [ 2¢s? 0 —cs? sc? 0 0 —s?c —sc?[Ux
1 0 142 sc2 = 0 -1 —-scz —=c3||%n
fr, —s?c  sc? s’¢ -sc2 0 0 0 0 |4
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Using fy, = H, f,, = —P and zeros for the rest it holds that the master stiffness equation is
[ 2cs? 0 —cs? s¢? 0 0 —s?c —sc*|[Ux] [ HT
1423 sc2 = 0 -1 —-sc2 =3 ||Wn —P
s’c —sc? 0 0 0 0 ||Ux, 0
% cs 0 0 0 0 Uy,[_1 0
L 0 0 0 0 U, | 7] 0
1 0 0 Uy, 0
s?c  sc? ||Ux, 0
[ symm c® 1uy,l Lo

The fifth column represents the effect the displacement in x-direction of node 3 has on the
internal forces on the bar. The coefficients are therefore zero since bar (2) is vertical and
node 3 is not horisontally connected to neither node 2 or 4. The fift row represents the
effect from other displacements on the internal forces at node 3 in the x-direction which by
the same arguments also should be zero.

1.1.2:

Searched:
Apply boundary conditions and show the 2-equation modified stiffness system.

Solution:

Applying the boundary conditions
Uy, =
uJ’z =
the system is reduced to

EAT2¢s2 0 ]ux1]=[H]
LL o 14231y, —pPl

1.1.3:

Searched:

Solve for Uy, Uy, - Check that makes sense for ¢ —» 0, — g
Why u, “blow up” fora — 0,H # 0?



Solution:

The system
EAT2¢s? 0 ][ux1]=[H]
LL 0 1423y, —P

result in the displacements

_HL
W1 = DFAcs?
PL

Y17 T EA(1 + 2¢3)

For the limiting cases « —» 0 and a — guyl takes on its highest and lowest values. This
makes physical sense for @ — 0 since in this case all three bars are vertical hence maximum
resistance to displacement in y direction. For a — g bar (1) and (3) would be infinitely large

and therefore approximately be at a horisontal position yielding only the middle bar (2)
giving the vertical displacement resistance.

The displacement u, does not handle the Iimiting cases well due to a resulting division with
zero. Note however that the limiting case a = |sn "t physical since this would mean bars (1)
and (3) having infinite length. For &« — 0 the problem would be one bar with free rotation
around point (3). As a consequence there would be no resistance to rotation round the
node, making the problem highly unstable regarding finding an equilibrium resulting in the
solution u, "blowing up”. Moreover the case of one free rotating bar with forces acting on
the free node is a simple problem that can be solved without the direct stiffness method.

1.1.4:

Searched:
Axial forces F(©),
Solution:

The axial forces are recieved by the relations

E(@) g(e) E(e) g(e)
(e) —
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Fe _kS de - L(e) - L(e) (u )

for which we need the local displacements u(®. This is achieved W|th

i© = Ty

For member (1) we get
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For member (2) we get
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For member (3) we get
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The solutions F and F® ”blow up” for @ — 0. This represents the situation where all bars
are vertical and therefore there exists no axial forces preventing rotation around the
common node. Note that the common node would be placed where node 3 is in the figure.
No prevention of axial rotation would make an equilibrium highly unstable.

1.2:

Searched:

Try Dr. Who's suggestion by hand computations and verify that the solution “blows up”
because the modified master stiffness is singular. Explain physically.

Solution:

The problem from the first lesson, modified with the extra node according to Dr. Who's
instructions yield the geometry in the following figure.



EA(4)AN(4)=200V2
LA(4)=5v2

EA(3)AA(3)=200V2
LA(3)=5V2

1A (1) 2

. L =10 -
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EV'A *— 1)

In the same manner as in task 1.1, using the values for E® A®© and L© from the figure, we
obtain

1 0 -1 0
K K 10 10 1 ol
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0 0 0 of
1 0 -1 0
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2@ _ 0 0 0 O
K 40 10 1 ol
[0 0 0 O

Translating from local to global coordinates for members (2), (3) and (4) yields the
translation matrices
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Using the translation matrices together with the local stiffness matrices the resulting global
stiffness matrices become
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Expanding the stiffness matrices and using assembly as in task 1.1 the final master stiffness

equations become
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The last two rows and columns are identical hence the matrix consists of dependent rows
and is singular. In other words, the system cannot be solved due to lack of coundary
conditions. Adding an extra node adds degrees of freedom to the system which means that
without also adding extra boundary conditions the system will have too many degrees of
freedom to be able to solve.



