
Homework	1:	The	Direct	Stiffness	Method	
	
Author:	Daniel	Benjaminsson	
Date:	2019-02-11	

1.1.1:	
Given:	

𝑃,𝐻, 𝐿, 𝐸, 𝐴, 𝛼	
BC:	

𝑢)* = 𝑢), = 𝑢)- = 0	
𝑢/* = 𝑢/, = 𝑢/- = 0	

	
𝑐 = 𝑐𝑜𝑠𝛼, 𝑠 = 𝑠𝑖𝑛𝛼	

	
	
Searched:	
Show	that	the	master	stiffness	equations	are	
	

𝐸𝐴
𝐿

2𝑐𝑠6 0 −𝑐𝑠6 𝑐6𝑠 0 0 −𝑐𝑠6 −𝑐6𝑠
1 + 2𝑐: 𝑐6𝑠 −𝑐: 0 −1 −𝑐6𝑠 −𝑐:

𝑐𝑠6 −𝑐6𝑠 0 0 0 0
𝑐: 0 0 0 0

0 0 0 0
1 0 0

𝑐𝑠6 𝑐6𝑠
𝑠𝑦𝑚𝑚 𝑐:

𝑢)=
𝑢/=
𝑢)*
𝑢/*
𝑢),
𝑢/,
𝑢)-
𝑢/-	

=

𝐻
−𝑃
0
0
0
0
0
0

,	

	
explain	from	physics	why	the	5th	row	and	column	contains	only	zeros.	
	
Solution:	
	
In	a	truss	member	the	following	relationship	is	true	
	

𝐹 @ = 𝑘B
(@)𝑑 @ =

𝐸 @ 𝐴 @

𝐿 @ 𝑑 @ ,	
	

𝐹 @ = 𝑓)G
@ = 	−𝑓)H

@ ,	
𝑑 @ = 𝑢)I

@ − 𝑢)J
@ ,	

which		concluded	in	matrix	form	becomes	
	

𝑓)H
𝑓/H
𝑓)G
𝑓/G

=
𝐸𝐴
𝐿

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

𝑢)H
𝑢/H
𝑢)G
𝑢/G

.	



This	results	in	the	local	stiffness	matrices	

𝑲 M = 𝑲 : =
𝐸𝐴
𝐿/𝑐

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

,	

	

𝑲 6 =
𝐸𝐴
𝐿

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

.	

	
Choosing	local	coordinates	the	local	x-axis	should	be	aligned	with	the	truss	member.	To	
make	the	problem	as	simple	as	possible	it	is	also	recommended	to	choose	the	directions	of	
the	local	x-	and	y-axis	yielding	the	smallest	possible	angle	of	deviation	from	the	global	x-	and	
y-axis.	The	following	local	coordinates	are	chosen	for	the	three	members.	
	

	
	
The	chosen	local	coordinates	result	in	relationships	between	local	and	global	displacements	
and	forces.	Using	
	

𝑐 = 𝑐𝑜𝑠𝛼, 𝑠 = 𝑠𝑖𝑛𝛼	
	
the	displacement	relationship	for	member	(1)	becomes	
	

𝑢)M
M

𝑢/M
M

𝑢)6
M

𝑢/6
M

=

𝑠 −𝑐 0 0
𝑐 𝑠 0 0
0 0 𝑠 −𝑐
0 0 𝑐 𝑠

𝑢)M
M

𝑢/M
M

𝑢)6
M

𝑢/6
M

	

𝒖 M = 𝑻 M 𝒖 M 	
and	the	force	relationship	



𝑓)M
M

𝑓/M
M

𝑓)6
M

𝑓/6
M

=

𝑠 𝑐 0 0
−𝑐 𝑠 0 0
0 0 𝑠 𝑐
0 0 −𝑐 𝑠

𝑓)M
M

𝑓/M
M

𝑓)6
M

𝑓/6
M

.	

	
For	member	(2)	the	relationships	become	
	

𝑢)M
6

𝑢/M
6

𝑢):
6

𝑢/:
6

=

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

𝑢)M
6

𝑢/M
6

𝑢):
6

𝑢/:
6

,	

𝒖 6 = 𝑻 6 𝒖 6 ,	
𝑓)M
6

𝑓/M
6

𝑓):
6

𝑓/:
6

=

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

𝑓)M
6

𝑓/M
6

𝑓):
6

𝑓/:
6

.	

	
Lastly	for	member	(3)	the	relationships	become	
	

𝑢)M
:

𝑢/M
:

𝑢)Q
:

𝑢/Q
:

=

𝑠 𝑐 0 0
−𝑐 𝑠 0 0
0 0 𝑠 𝑐
0 0 −𝑐 𝑠

𝑢)M
:

𝑢/M
:

𝑢)Q
:

𝑢/Q
:

,	

𝒖 : = 𝑻 : 𝒖 : ,	
𝑓)M
:

𝑓/M
:

𝑓)Q
:

𝑓/Q
:

=

𝑠 −𝑐 0 0
𝑐 𝑠 0 0
0 0 𝑠 −𝑐
0 0 𝑐 𝑠

𝑓)M
:

𝑓/M
:

𝑓)Q
:

𝑓/Q
:

.	

	
Using	the	relationships	

𝒇 @ = 𝑻 @ 𝒇 @ ,	
𝒖 @ = 𝑻 @ 𝒖 @ 	
𝑲 @ 𝒖 @ = 𝒇 𝒆 	

the	global	stiffness	matrix	can	be	expressed	in	terms	of	the	local	stiffness	matrix	and	the	
transformation	matrix	as	follows:	
	
	

𝑲 @ 𝑻 @ 𝒖 @ = 𝑻 @ 𝒇 @ 	
𝑻 @ T

𝑲 @ 𝑻 @ 𝒖 @ = 𝒇 @ 	
	



𝑲 @ 𝒖 @ = 𝒇 𝒆 	
	

𝑲 @ = 𝑻 @ T
𝑲 @ 𝑻 @ .	

	
Using	the	calculated	transformation	and	stiffness	matrices	the	following	global	stiffness	
matrices	are	recieved:	
	

𝑲 M = 𝑻 M T
𝑲 M 𝑻 M =

𝑠 𝑐 0 0
−𝑐 𝑠 0 0
0 0 𝑠 𝑐
0 0 −𝑐 𝑠

𝐸𝐴
𝐿/𝑐

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

𝑠 −𝑐 0 0
𝑐 𝑠 0 0
0 0 𝑠 −𝑐
0 0 𝑐 𝑠

=	

=
𝐸𝐴𝑐
𝐿

𝑠6 −𝑠𝑐 −𝑠6 𝑠𝑐
−𝑐𝑠 𝑐6 𝑠𝑐 −𝑐6
−𝑠6 𝑠𝑐 𝑠6 −𝑠𝑐
𝑠𝑐 −𝑐6 −𝑠𝑐 𝑐6

	

	
	

𝑲 6 = 𝑻 6 T
𝑲 6 𝑻 6 =

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

𝐸𝐴
𝐿

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

=	

=
𝐸𝐴
𝐿

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

	

	
	

𝑲 : = 𝑻 : T
𝑲 : 𝑻 : =

𝑠 −𝑐 0 0
𝑐 𝑠 0 0
0 0 𝑠 −𝑐
0 0 𝑐 𝑠

𝐸𝐴
𝐿/𝑐

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

𝑠 𝑐 0 0
−𝑐 𝑠 0 0
0 0 𝑠 𝑐
0 0 −𝑐 𝑠

=	

	

=
𝐸𝐴𝑐
𝐿

𝑠6 𝑠𝑐 −𝑠6 −𝑠𝑐
𝑠𝑐 𝑐6 −𝑠𝑐 −𝑐6
−𝑠6 −𝑠𝑐 𝑠6 𝑠𝑐
−𝑠𝑐 −𝑐6 𝑠𝑐 𝑐6

.	

	
For	a	hand	written	assembly	the	stiffness	matrices	are	expanded	to	make	the	process	easier.	
The	expanded	matrices	result	in	the	following	systems	for	member	(1),	(2)	and	(3):	
	



𝑓)M
M

𝑓/M
M

𝑓)6
M

𝑓/6
M

𝑓):
M

𝑓/:
M

𝑓)Q
M

𝑓/Q
M

=
𝐸𝐴𝑐
𝐿

𝑠6 −𝑠𝑐 −𝑠6 𝑠𝑐 0 0 0 0
−𝑠𝑐 𝑐6 𝑠𝑐 −𝑐6 0 0 0 0
−𝑠6 𝑠𝑐 𝑠6 −𝑠𝑐 0 0 0 0
𝑠𝑐 −𝑐6 −𝑠𝑐 𝑐6 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

𝑢)M
M

𝑢/M
M

𝑢)6
M

𝑢/6
M

𝑢):
M

𝑢/:
M

𝑢)Q
M

𝑢/Q
M

	

	
	

𝑓)M
6

𝑓/M
6

𝑓)6
6

𝑓/6
6

𝑓):
6

𝑓/:
6

𝑓)Q
6

𝑓/Q
6

=
𝐸𝐴
𝐿

0 0 0 0 0 0 0 0
0 1 0 0 0 −1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

𝑢)M
6

𝑢/M
6

𝑢)6
6

𝑢/6
6

𝑢):
6

𝑢/:
6

𝑢)Q
6

𝑢/Q
6

	

	
	

𝑓)M
:

𝑓/M
:

𝑓)6
:

𝑓/6
:

𝑓):
:

𝑓/:
:

𝑓)Q
:

𝑓/Q
:

=
𝐸𝐴𝑐
𝐿

𝑠6 𝑠𝑐 0 0 0 0 −𝑠6 −𝑠𝑐
𝑠𝑐 𝑐6 0 0 0 0 −𝑠𝑐 −𝑐6
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
−𝑠6 −𝑠𝑐 0 0 0 0 𝑠6 𝑠𝑐
−𝑠𝑐 −𝑐6 0 0 0 0 𝑠𝑐 𝑐6

𝑢)M
:

𝑢/M
:

𝑢)6
:

𝑢/6
:

𝑢):
:

𝑢/:
:

𝑢)Q
:

𝑢/Q
:

.	

	
The	local	displacements	𝑢)J

@ 	can	be	written	in	global	form	using	the	compability	
	

𝑢)J
M = 𝑢)J

6 = 𝑢)J
: = 𝑢)J 	

𝑢/J
M = 𝑢/J

6 = 𝑢/J
: = 𝑢/J 	

	
resulting	in	the	master	stiffness	equations	
	



𝑓)=
𝑓/=
𝑓)*
𝑓/*
𝑓),
𝑓/,
𝑓)-
𝑓/-

=
𝐸𝐴
𝐿

2𝑐𝑠6 0 −𝑐𝑠6 𝑠𝑐6 0 0 −𝑠6𝑐 −𝑠𝑐6
0 1 + 2𝑐: 𝑠𝑐6 −𝑐: 0 −1 −𝑠𝑐6 −𝑐:

−𝑠6𝑐 𝑠𝑐6 𝑠6𝑐 −𝑠𝑐6 0 0 0 0
𝑠𝑐6 −𝑐: −𝑠𝑐6 𝑐: 0 0 0 0
0 0 0 0 0 0 0 0
0 −1 0 0 0 1 0 0

−𝑠6𝑐 −𝑠𝑐6 0 0 0 0 𝑠6𝑐 𝑠𝑐6
−𝑠𝑐6 −𝑐: 0 0 0 0 𝑠𝑐6 𝑐:

𝑢)=
𝑢/=
𝑢)*
𝑢/*
𝑢),
𝑢/,
𝑢)-
𝑢/-

.	

	
Using		𝑓)= = 𝐻, 𝑓/= = −𝑃	and	zeros	for	the	rest	it	holds	that	the	master	stiffness	equation	is	
	

𝐸𝐴
𝐿

2𝑐𝑠6 0 −𝑐𝑠6 𝑠𝑐6 0 0 −𝑠6𝑐 −𝑠𝑐6
1 + 2𝑐: 𝑠𝑐6 −𝑐: 0 −1 −𝑠𝑐6 −𝑐:

𝑠6𝑐 −𝑠𝑐6 0 0 0 0
𝑐: 0 0 0 0

0 0 0 0
1 0 0

𝑠6𝑐 𝑠𝑐6
𝑠𝑦𝑚𝑚 𝑐:

𝑢)=
𝑢/=
𝑢)*
𝑢/*
𝑢),
𝑢/,
𝑢)-
𝑢/-

=

𝐻
−𝑃
0
0
0
0
0
0

	

	
The	fifth	column	represents	the	effect	the	displacement	in	x-direction	of	node	3	has	on	the	
internal	forces	on	the	bar.	The	coefficients	are	therefore	zero	since	bar	(2)	is	vertical	and	
node	3	is	not	horisontally	connected	to	neither	node	2	or	4.	The	fift	row	represents	the	
effect	from	other	displacements	on	the	internal	forces	at	node	3	in	the	x-direction	which	by	
the	same	arguments	also	should	be	zero.	

1.1.2:	
Searched:	
Apply	boundary	conditions	and	show	the	2-equation	modified	stiffness	system.	
	
Solution:	
	
Applying	the	boundary	conditions	

𝑢)* = 𝑢), = 𝑢)- = 0	
𝑢/* = 𝑢/, = 𝑢/- = 0	

the	system	is	reduced	to	
	

𝐸𝐴
𝐿

2𝑐𝑠6 0
0 1 + 2𝑐:

𝑢)=
𝑢/=

= 𝐻
−𝑃 .	

	

1.1.3:	
Searched:	
Solve	for	𝑢)=, 𝑢/=.	Check	that	makes	sense	for		𝛼 → 0, 𝛼 → V

6
.	

Why	𝑢)=	”blow	up”	for	𝛼 → 0,𝐻 ≠ 0?	



Solution:	
The	system	

𝐸𝐴
𝐿

2𝑐𝑠6 0
0 1 + 2𝑐:

𝑢)=
𝑢/=

= 𝐻
−𝑃 	

result	in	the	displacements	

𝑢)= =
𝐻𝐿

2𝐸𝐴𝑐𝑠6
	

𝑢/= = −
𝑃𝐿

𝐸𝐴 1 + 2𝑐:
.	

	
For	the	limiting	cases		𝛼 → 0	and	𝛼 → V

6
	𝑢/= 	takes	on	its	highest	and	lowest	values.	This	

makes	physical	sense	for	𝛼 → 0	since	in	this	case	all	three	bars	are	vertical	hence	maximum	
resistance	to	displacement	in	y	direction.	For	𝛼 → V

6
	bar	(1)	and	(3)	would	be	infinitely	large	

and	therefore	approximately	be	at	a	horisontal	position	yielding	only	the	middle	bar	(2)	
giving	the	vertical	displacement	resistance.	
	
The	displacement	𝑢)=	does	not	handle	the	limiting	cases	well	due	to	a	resulting	division	with	
zero.	Note	however	that	the	limiting	case	𝛼 → V

6
	isn’t	physical	since	this	would	mean	bars	(1)	

and	(3)	having	infinite	length.	For	𝛼 → 0	the	problem	would	be	one	bar	with	free	rotation	
around	point	(3).	As	a	consequence	there	would	be	no	resistance	to	rotation	round	the	
node,	making	the	problem	highly	unstable	regarding	finding	an	equilibrium	resulting	in	the	
solution	𝑢)= 	”blowing	up”.	Moreover	the	case	of	one	free	rotating	bar	with	forces	acting	on	
the	free	node	is	a	simple	problem	that	can	be	solved	without	the	direct	stiffness	method.	
	

1.1.4:	
Searched:	
Axial	forces	𝐹(@).	
Solution:	
The	axial	forces	are	recieved	by	the	relations	

𝐹 @ = 𝑘B
(@)𝑑 @ =

𝐸 @ 𝐴 @

𝐿 @ 𝑑 @ =
𝐸 @ 𝐴 @

𝐿 @ (𝑢)I
@ − 𝑢)J

@ )	

for	which	we	need	the	local	displacements	𝒖 @ .	This	is	achieved	with	
	

𝒖 @ = 𝑻 @ 𝒖 @ .	
	
For	member	(1)	we	get	
	

𝑢)M
M

𝑢/M
M

𝑢)6
M

𝑢/6
M

=

𝑠 −𝑐 0 0
𝑐 𝑠 0 0
0 0 𝑠 −𝑐
0 0 𝑐 𝑠

𝐻𝐿
2𝐸𝐴𝑐𝑠6

−
𝑃𝐿

𝐸𝐴 1 + 2𝑐:
0
0

	

	



𝐹 M =
𝐸𝐴
𝐿/𝑐

𝑢)=
M − 𝑢)*

M =
𝐸𝐴𝑐
𝐿

𝐻𝐿
2𝐸𝐴𝑐𝑠

+
𝑃𝐿𝑐

𝐸𝐴 1 + 2𝑐:
=
𝐻
2𝑠
+

𝑃𝑐6

1 + 2𝑐:
.	

	
For	member	(2)	we	get	
	

𝑢)M
6

𝑢/M
6

𝑢):
6

𝑢/:
6

=

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

𝐻𝐿
2𝐸𝐴𝑐𝑠6

−
𝑃𝐿

𝐸𝐴 1 + 2𝑐:
0
0

	

	

𝐹(6) =
𝐸𝐴
𝐿

𝑢)=
6 − 𝑢),

6 =
𝐸𝐴𝑐
𝐿

𝑃𝐿
𝐸𝐴 1 + 2𝑐:

− 0 =
𝑃𝑐

1 + 2𝑐:
.	

	
For	member	(3)	we	get	
	

𝑢)M
:

𝑢/M
:

𝑢)6
:

𝑢/6
:

=

𝑠 𝑐 0 0
−𝑐 𝑠 0 0
0 0 𝑠 𝑐
0 0 −𝑐 𝑠

𝐻𝐿
2𝐸𝐴𝑐𝑠6

−
𝑃𝐿

𝐸𝐴 1 + 2𝑐:
0
0

	

	

𝐹 : =
𝐸𝐴
𝐿/𝑐

𝑢)-
: − 𝑢)=

: =
𝐸𝐴𝑐
𝐿

−
𝐻𝐿

2𝐸𝐴𝑐𝑠
+

𝑃𝐿𝑐
𝐸𝐴 1 + 2𝑐:

= −
𝐻
2𝑠
+

𝑃𝑐6

1 + 2𝑐:
.	

	
The	solutions	𝐹 M 	and	𝐹 : 	”blow	up”	for	𝛼 → 0.	This	represents	the	situation	where	all	bars	
are	vertical	and	therefore	there	exists	no	axial	forces	preventing	rotation	around	the	
common	node.	Note	that	the	common	node	would	be	placed	where	node	3	is	in	the	figure.	
No	prevention	of	axial	rotation	would	make	an	equilibrium	highly	unstable.	
	

1.2:	
Searched:	
Try	Dr.	Who’s	suggestion	by	hand	computations	and	verify	that	the	solution	”blows	up”	
because	the	modified	master	stiffness	is	singular.	Explain	physically.	
Solution:	
The	problem	from	the	first	lesson,	modified	with	the	extra	node	according	to	Dr.	Who’s	
instructions	yield	the	geometry	in	the	following	figure.	



	
	
	
In	the	same	manner	as	in	task	1.1,	using	the	values	for	𝐸 @ , 𝐴 @ 	and	𝐿 @ 	from	the	figure,	we	
obtain	

𝑲 M = 𝑲 M = 10

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

,	

𝑲 6 = 5

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

,	

𝑲 : = 40

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

,	

𝑲 Q = 40

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

.	

	
	
Translating	from	local	to	global	coordinates	for	members	(2),	(3)	and	(4)	yields	the	
translation	matrices	
	
	



𝑻 6 =

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

	

	

𝑻 : = 𝑻 Q =

0.5 0.5 0 0
−0.5 0.5 0 0
0 0 0.5 0.5
0 0 −0.5 0.5

.	

	
Using	the	translation	matrices	together	with	the	local	stiffness	matrices	the	resulting	global	
stiffness	matrices	become	
	

𝑲 6 = 𝑻 6 T
𝑲 6 𝑻 6 =

0 −1 0 0
1 0 0 0
0 0 0 −1
0 0 1 0

5

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

=	

= 5

0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

,	

𝑲 𝟒 = 𝑲 : = 𝑻 : T
𝑲 : 𝑻 :

=

1
2

−
1
2

0 0

1
2

1
2

0 0

0 0
1
2

−
1
2

0 0
1
2

1
2

40

1 0 −1 0
0 0 0 0
−1 0 1 0
0 0 0 0

1
2

1
2

0 0

−
1
2

1
2

0 0

0 0
1
2

1
2

0 0 −
1
2

1
2

= 40

0.5 0.5 −0.5 −0.5
0.5 0.5 −0.5 −0.5
−0.5 −0.5 0.5 0.5
−0.5 −0.5 0.5 0.5

.	

	
Expanding	the	stiffness	matrices	and	using	assembly	as	in	task	1.1	the	final	master	stiffness	
equations	become	
	

30 20 −10 0 0 0 −20 −20
20 0 0 0 0 −20 −20

10 0 0 0 0 0
5 0 −5 0 0

20 20 −20 −20
25 −20 −20

40 40
𝑠𝑦𝑚𝑚 40

𝑢)=
𝑢/=
𝑢)*
𝑢/*
𝑢),
𝑢/,
𝑢)-
𝑢/-

=

𝑓)=
𝑓/=
𝑓)*
𝑓/*
𝑓),
𝑓/,
𝑓)-
𝑓/-

.	

	



The	last	two	rows	and	columns	are	identical	hence	the	matrix	consists	of	dependent	rows	
and	is	singular.	In	other	words,	the	system	cannot	be	solved	due	to	lack	of	coundary	
conditions.	Adding	an	extra	node	adds	degrees	of	freedom	to	the	system	which	means	that	
without	also	adding	extra	boundary	conditions	the	system	will	have	too	many	degrees	of	
freedom	to	be	able	to	solve.	


