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1- Introduction 

The goal of the assignment is to apply the Direct Stiffness Method to analyze 

different trusses. The solution of the proposed assignments is presented and a discussion 

of the applied method was considered. 

2 – Assingment 1 

2.1 – Point A 

 Considering the Truss depicted in Figure 1, where L is the distance between nodes 

1 and 3, it is possible to apply the Direct Stiffness Method to each bar and  write the 

Element Stiffness Equation (1) for each bar :  

 

Figure 1. The truss considered for assignment 1 

                                                𝒇(𝑒)  =  𝑲(𝑒)𝒖(𝑒)                                           (1) 

 Equation (1) is written considering the global coordinate axis (in orange in Figure 

1). The Element Stiffness Matrix K(e) can be written in terms of the local coordinate 

Element Stiffness Matrix Klocal
(e) and the Element Rotation Matrix T.  Figure 2 depicts, as 

an example, the local coordinate system of the element 3 Equation (2) presents such 

relationship: 
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Figure 2. Local coordinate system (in green) of element 3 

                                               𝑲(𝑒) =  (𝑻(𝑒))T 𝑲𝑙𝑜𝑐𝑎𝑙
(𝑒)

 𝑻(𝑒)                              (2) 

 Where 

 

 

 Equation 2  is applied to each bar element presented in Figure 1 to define their 

Element Stiffness Matrix K(e) :  
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 Since the three Element Stiffness Matrices are defined, it is possible to assemble 

the global stiffness matrix K and the master stiffness equations f = Ku. The assembly of 

the master stiffness equations is achieved by applying compatibility for displacements at 

joints of the truss and equilibrium between internal and external forces acting on the 

structure. Equation 3 presents how compatibility and equilibrium are applied between the 

bar elements through the Equilibrium Rule to obatin the master stiffness equations. 

                    𝒇 =  𝒇(1) +  𝒇(2) +  𝒇(3) =  (𝑲(1) + 𝑲(2) +  𝑲(3))𝒖 =  𝑲𝒖            (3) 

 Replacing the values of K(1), K(2) and K(3) in Equation 3 and considering the 

equilibrium between internal and external forces applied to the structure, the master 

stiffness equations can be written as : 

 

 It is worth mentioning that the 5th coloumn and row contain only zeros because 

element 2 is aligned with the global y-axis. Element 2 is a bar element, it only has 

displacement along its length direction (local x-axis direction), and since its length is 

aligned with global y-axis, there is no dispacement in the global x-axis direction. That is 

why all the coefficients in the global stiffness matrix which multiply the displacement ux3 

are zero. 
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2.2 – Point B 

 Applying the following boundary conditions : 

ux2 = uy2 = ux3 = uy3 = ux4 = uy4 = 0 

 the master stiffness equations reduce to the following equations : 

                                                        
𝐸𝐴

𝐿
 (2𝑐𝑠2) 𝑢𝑥1  =  𝐻                                             (4) 

                                                     
𝐸𝐴

𝐿
 (1 +  2𝑐3) 𝑢𝑦1  =  −𝑃                                          (5) 

2.3 – Point C 

 To find the displacements of node 1 we solve the Equations 5 and 6 : 

𝑢𝑥1  =  (
𝐻𝐿

𝐸𝐴
) (

1

2𝑐𝑠2) 

𝑢𝑦1  =  (
−𝑃𝐿

𝐸𝐴
) (

1

2𝑐³ + 1
) 

 It is also possible to check how the solution for the displacements behave in the 

limit cases of α→0 and α→π/2. 

Considering α→0 : 

𝑢𝑥1  →    ∞  

𝑢𝑦1  →   (
−𝑃𝐿

𝐸𝐴
) (

1

3
) 

 In the case of the displacement ux1, its value tends to infinity due to the sinα in its 

denominator, which approaches the value 0 as α tends to 0, and considering H ≠ 0. Such 

behavior makes physical sense, because as α approaches zero, the elements 1 and 3 

tend to become aligned to the global y-axis. In such scenario the structure would behave 

as a pendulum, there would be no resistance (no stiffness) to the force H in the global x-

direction and the displacement ux1 would tend to infinity.  Such expected behavior is due 

to the feature of the bar element, which only has stiffness along its length direction. 
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Regarding the displacement uy1, the behavior in this limit case makes physical sense, 

because the three elements would overlap each other while being aligned with the global 

y-direction. In such scenario, the stiffness in the global y-direction would be three times 

greater (the sitffness of each element would be summed over) and so the displacement 

should be three times smaller (Hooke’s Law). 

Considering α→ π/2 : 

𝑢𝑥1  →    ∞  

𝑢𝑦1  →   (
−𝑃𝐿

𝐸𝐴
) 

 For the displacement ux1, its value also tends to infinity due to the cosα in its 

denominator, which approaches the value 0 as α tends to π/2, considering H ≠ 0. Such 

behavior also makes physical sense, since in this limit case the elements 1 and 3 are 

parallel with the global x-axis and the legth of both elements would tend to infinity. In such 

scenario, the stiffness of both elements would tend to zero and there would be no 

resistance to the force H and the displacement ux1 would tend to infinity.Again, such 

expected behavior is due to the feature of the bar element, which only has stiffness along 

its length direction. For the displacement uy1, the behavior presented in the limit case 

makes physical sense, since the element 2 is the only element aligned with the global y-

axis. In such scenario, only the stiffness of element 2 would be considered to calculate 

the displacement uy1. 

2.4 – Point D 

 To recover the axial forces it is necessary to calculate the displacements according 

to the local axis of each element with the following relationship : 

                                                  𝒖𝒍𝒐𝒄𝒂𝒍
(𝒆)

 =  𝑻(𝒆)𝒖(𝒆)                                      (6) 

 Since the bar elements have internal force only along the local x-axis (direction of 

stiffness), the axial (internal) forces can be calculated with the following relationship : 

                                                  𝑭(𝒆) =  
𝑬(𝒆)𝑨(𝒆)

𝑳(𝒆)
𝒅(𝒆)                                      (7) 
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Where d(e)  is the difference between the axial (local x-axis) displacements of the 

element’s nodes :  

                                              𝒅(𝒆) =  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝒋
(𝒆)

 −  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝒊
(𝒆)

                                 (8) 

 Applying Equations 6-8, the internal force of each element can be calculated : 

For element 1 : 

𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟏
(𝟏)

=  −
𝑳

𝑬𝑨
 (

𝑯

𝟐𝒄𝒔
 +  

𝑷𝒄

𝟐𝒄𝟑 +  𝟏
) 

𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟐
(𝟏)

=  𝟎 

𝒅(𝟏) =  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟐
(𝟏)

 −  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟏
(𝟏)

 =  
𝑳

𝑬𝑨
 (

𝑯

𝟐𝒄𝒔
 +  

𝑷𝒄

𝟐𝒄𝟑 +  𝟏
) 

𝑭(𝟏) =  (
𝑯

𝟐𝒔
 +  

𝑷𝒄𝟐

𝟐𝒄𝟑 +  𝟏
) 

For element 2 : 

𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟏
(𝟐)

=  −
𝑳

𝑬𝑨
 ( 

𝑷

𝟐𝒄𝟑 +  𝟏
) 

𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟑
(𝟐)

=  𝟎 

𝒅(𝟐) =  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟑
(𝟐)

 −  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟏
(𝟐)

 =  
𝑳

𝑬𝑨
 ( 

𝑷

𝟐𝒄𝟑 +  𝟏
) 

𝑭(𝟐) =  ( 
𝑷

𝟐𝒄𝟑 +  𝟏
)  

For element 3 : 

𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟏
(𝟑)

=  
𝑳

𝑬𝑨
 (

𝑯

𝟐𝒄𝒔
 −  

𝑷𝒄

𝟐𝒄𝟑 +  𝟏
) 
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𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟒
(𝟑)

=  𝟎 

𝒅(𝟑) =  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟒
(𝟑)

 −  𝒖𝒍𝒐𝒄𝒂𝒍/𝒙𝟏
(𝟑)

 =  −
𝑳

𝑬𝑨
 (

𝑯

𝟐𝒄𝒔
 −  

𝑷𝒄

𝟐𝒄𝟑 +  𝟏
) 

𝑭(𝟑) =  (−
𝑯

𝟐𝒔
 +  

𝑷𝒄𝟐

𝟐𝒄𝟑 +  𝟏
) 

 It is important to state that F(1) and F(3) tend to infinity when H≠0 and α→0, because 

in such limit case the displacement in the global x-direction of node 1 tends to infinity as 

well (elements 1 and 3 would not offer resistance to the external load H). 

3 - Assignment 2 

 Considering the new truss depicted in Figure 3 it is possbile to obtain the element 

stiffness matrices :  

 

Figure 3. Truss considered for assignment 2. 
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Considering the element stiffness matrices and applying Equations 1-3 as well as 

compatibility for nodal displacement and equilibrium between internal and external forces,  

the following master stiffness equations are obtained : 

 

 Applying the following boundary conditions to the master stiffeness equations  

ux1 = uy1 = uy2 = 0 

the resulting system of equations is : 
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The resulting system of equations is singular since there are linear dependent 

columns and, therefore, cannot be solved. The linear dependent columns are the 4th and 

5th, which are related to the degrees of freedom of node 4 (the extra node). At such node, 

there is only one force acting on it (internal force of element 3 before node 4 was added) 

and there are no prescribed displacement restrictions, therefore the equilibrium rule used 

in the Direct Stiffness Method is not met at that node. Such behavior makes the solution 

“blow up”. 

4 – Discussion and Extensions 

 The Direct Stiffness Method has its formulation based on the equilibrium rule 

between the elements. The method presented itself to be very uselful when applied to 

structures built with 1D bars in 1 or 2D space. Accounting for the 1D bars, the equilibrium 

equations can be obtained in a simple manner and the compatibility between the element 

can be enforced naturally. It is important to mention that, since the element is a 1D bar, 

the constitutive behavior between stress and strain reduces to an equivalent spring 

stiffness (Hooke’s Law). Therefore, structures built with trusses can be analyzed in a 

simple manner by applying the Direct Stiffness Method. Nevertheless, when considering 

2D elements, the equilibrium equations would be much more complicated to be obtained 

and the Direct Stiffness Method becomes impracticable. In such cases, other approaches 

should applied in order to obtain the displacement field.  
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Appendix 1 – Solution of Classwork 

Considering the structure depicted in Figure 1A and L = 6m, A = 6cm², E=200GPa 

F = 80KN : 

 

Figure 1A. Structure under analysis. 

It is possible to calculate each element stiffness matrix : 

𝑲(1)  =  106 (

0 0 0 0
0 20 0 −20
0 0 0 0
0 −20 0 20

) 

𝑲(2)  =  106 (

20 0 −20 0
0 0 0 0

−20 0 20 0
0 0 0 0

) 

𝑲(3)  =  106 (

7.071 −7.071 −7.071 7.0710
−7.071 7.071 7.071 −7.071
−7.071 7.071 7.071 −7.071
7.071 −7.071 −7.071 7.071

) 

𝑲(4)  =  106 (

7.071 7.071 −7.071 −7.0710
7.071 7.071 −7.071 −7.071

−7.071 −7.071 7.071 7.071
−7.071 −7.071 7.071 7.071

) 

𝑲(5)  =  106 (

0 0 0 0
0 20 0 −20
0 0 0 0
0 −20 0 20

) 
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Applying the equilibium between external and internal forces and imposing the 

compatibility at nodes’s diplacements, the master stiffness equations can be writeen as : 

 

 Applying the following boundary conditions to the master stiffness equations, the 

reduced stiffness equations are obtained : 

ux1 = uy1 = ux4 = uy4 = 0 

 

 Solving for the displacement ux2, uy2, ux3  and uy3 and writting the full displacement 

vector: 

uT = 10-3 * [ 0   0   8.54    2.23   6.77   -1.77   0   0 ]T [m] 
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