
Computational Structural Mechanics and Dynamics 
 
 

 
 
 

Página 1 
 

  

HOMEWORK 4 
 

Assignment 4.1: Isoparametric representation 

 

1) Get the Jacobian (J) and show that 

- If -¼ < α < ¼, J>0 over the whole element -1 ≤ ξ ≤ 1. 

- If α = 0, J = L/2 over the element. 

The position of the nodes are written as, 

𝑥 = 𝑁1𝑥1 +𝑁2𝑥2 + 𝑁3𝑥3 

and its derivate define the Jacobian, 

𝐽 =
𝑑𝑥

𝑑𝜉
=
𝑑𝑁1
𝑑𝜉

𝑥1 +
𝑑𝑁2
𝑑𝜉

𝑥2 +
𝑑𝑁3
𝑑𝜉

𝑥3 

The shape functions are defined as 

𝑁1 =
𝜉(−1 + 𝜉)

2
→
𝑑𝑁1
𝑑𝜉

=
2𝜉 − 1

2
 

𝑁2 =
𝜉(1 + 𝜉)

2
→
𝑑𝑁2
𝑑𝜉

=
2𝜉 + 1

2
 

𝑁3 = (1 − 𝜉
2) →

𝑑𝑁3
𝑑𝜉

= −2𝜉 

Substituting the values of the shape function in the Jacobian 

𝐽 =
𝑑𝑥

𝑑𝜉
=
2𝜉 − 1

2
0 +

2𝜉 + 1

2
𝐿 + −2𝜉 (

𝐿

2
+ 𝛼𝐿) = 𝐿 (

1

2
− 2𝛼𝜉) 

 If -¼ < α < ¼, J>0 over the whole element -1 ≤ ξ ≤ 1. 

The Jacobian is positive when the expression in parentheses is positive because the length of 

the element is always positive. Therefore, it should be studied how each parameter affect to 

the expression sign.  
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𝐽 > 0 →
1

2
− 2𝛼𝜉 > 0 

Firstly, it will be assumed that ξ is negative (-1< ξ <0) and will be analyzed the sign of the 

expression in parentheses depending on the values of α: 

𝐼𝑓 𝜉 < 0   →     
1

2
+ 2𝛼𝜉 

- Assuming α ≥ 0: The Jacobian would be always greater than zero for any 

positive α because the sum of both terms will be positive.  
1

2
+ 2𝛼𝜉 > 0 → 𝛼 > 0 

- Assuming α < 0: In this case the second term is negative and at a certain value 

the sum of both terms would be negative.  
1

2
− 2𝛼𝜉 > 0 → 𝛼 > −

1

4𝜉

   𝜉=1   
→    𝛼 > −

1

4
 

Therefore, the Jacobian would be positive for values of α greater than -¼. 

Lastly, the same process will be repeated for ξ > 0: 

𝐼𝑓 𝜉 > 0   →     
1

2
− 2𝛼𝜉 

- Assuming α > 0: The Jacobian would be positive only for values of α smaller 

than ¼. 
1

2
− 2𝛼𝜉 > 0 → 𝛼 <

1

4
 

- Assuming α ≤ 0: The Jacobian would be positive always. 
1

2
+ 2𝛼𝜉 > 0 → 𝛼 ≤ 0 

Takin into account both restriction α must be less than 1/4 . 

In conclusion, the Jacobian would be positive for values of α between -¼  and ¼. 

𝐽 > 0           ∀ 𝛼  ∈  [−
1

4
,
1

4
] 

 If α = 0, J = L/2 over the element. 

Substituting the value of α into the Jacobian: 

𝐽(𝛼 = 0) =
𝑑𝑥

𝑑𝜉
= 𝐿 (

1

2
− 2𝛼𝜉) =

𝐿

2
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2) Obtain the 1x3 strain displacement matrix (B): 

𝐵 =
𝑑𝑁

𝑑𝑥
= 𝐽−1

𝑑𝑁

𝑑𝜉
=
1

𝐽

[
 
 
 
 
 
 
𝑑𝑁1

𝑑𝜉
𝑑𝑁2

𝑑𝜉
𝑑𝑁3

𝑑𝜉 ]
 
 
 
 
 
 

=
1

𝐿 (
1

2
− 2𝛼𝜉)

[
 
 
 
 
2𝜉 − 1

2
2𝜉 + 1

2
−2𝜉 ]

 
 
 
 

 

3) Show that the element stiffness matrix is given by 

𝑲𝒆 = ∫ 𝑬 𝑨 𝑩𝑻 𝑩 𝒅𝒙
𝒍

𝟎

= ∫ 𝑬 𝑨 𝑩𝑻 𝑩 𝑱 𝒅𝝃
𝟏

−𝟏

 

The rod element must be mapped using natural coordinate (ξ) to have a uniform element. 

Therefore, the natural coordinate must be replaced using the Jacobian by the mapped ones. 

Ke(x) = ∫ E A BT B dx
x2

x1

= ∫ E A BT B dx
L

0

  →  Ke(ξ) = ∫ E A B(ξ)T B(ξ) J(ξ) dξ
ξ2

ξ1

 

The two extreme ends of the rod are ξ1 = -1 and ξ2 = 1 and the transformation of coordinate 

system is determined by the Jacobian. 

J =
dx

dξ
→ dx = J dξ 

 Ke(𝜉) = ∫ E A B(ξ)T B(ξ) J(ξ) dξ
1

−1
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Assignment 4.2: The 3-node Plane Stress Triangle         

1) Compute the entries of Ke: 

The stiffness matrix can be obtained using Gauss quadrature: 

K =∑wk B
TE B r J

p

k

 

 Weight (wk): The weights for the Gauss quadrature in triangular elements for linear 

element are written in following figure. 

 
 

 The constitutive matrix (E): 

E =

[
 
 
 
 
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0
1

2]
 
 
 
 

 

 

 Variable (r): The variable r and z are defined as, 

𝑟 = 𝑁1𝑟1 +𝑁2𝑟2 +𝑁3𝑟3 

𝑧 = 𝑁1𝑧1 +𝑁2𝑧2 +𝑁3𝑧3 

The shape functions for linear element are: 

𝑁1 = 1 − 𝜉 − 𝜂 

𝑁2 = 𝜉 

𝑁3 = 𝜂 

 

 Jacobian (J): The half of the determinant of the Jacobian is the area. 

𝐽 =

[
 
 
 
 
𝛿𝑟

𝛿𝜉

𝛿𝑟

𝛿𝜂
𝛿𝑧

𝛿𝜉

𝛿𝑧

𝛿𝜂]
 
 
 
 

= [
𝑟2 − 𝑟1 𝑟3 − 𝑟1
𝑧2 − 𝑧1 𝑧3 − 𝑧1

] = [
𝑎 𝑎
0 𝑏

] = 𝑎 𝑏 = 2𝐴𝑡𝑟𝑖 

Every element of the Jacobian matrix is defined in the following matrix for the variable 

r. They are calculated in the same way for the variable z. 

[
 
 
 
 
𝛿𝑟

𝛿𝜉
𝛿𝑟

𝛿𝜂]
 
 
 
 

=

[
 
 
 
 
𝛿𝑁1
𝛿𝜉

𝛿𝑁2
𝛿𝜉

𝛿𝑁3
𝛿𝜉

𝛿𝑁1
𝛿𝜂

𝛿𝑁2
𝛿𝜂

𝛿𝑁3
𝛿𝜂 ]
 
 
 
 

[

𝑟1
𝑟2
𝑟3
] = [

−1 1 0
−1 0 1

] [

𝑟1
𝑟2
𝑟3
] = [

𝑟2 − 𝑟1
𝑟3 − 𝑟1

] 

 

 The strain matrix (B): 
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B =

[
 
 
 
 
 
 
 
𝛿𝑁1
𝛿𝑟

0
𝛿𝑁2
𝛿𝑟

0
𝛿𝑁3
𝛿𝑟

0

0
𝛿𝑁1
𝛿𝑧

0
𝛿𝑁2
𝛿𝑧

0
𝛿𝑁3
𝛿𝑧

𝑁1
𝑟

0
𝑁2
𝑟

0
𝑁3
𝑟

0

𝛿𝑁1
𝛿𝑧

𝛿𝑁1
𝛿𝑟

𝛿𝑁2
𝛿𝑧

𝛿𝑁2
𝛿𝑟

𝛿𝑁3
𝛿𝑧

𝛿𝑁3
𝛿𝑟 ]
 
 
 
 
 
 
 

=

[
 
 
 
 
−𝐽−1 0 𝐽−1 0 0 0

0 −𝐽−1 0 0 0 𝐽−1

𝑁1
𝑟

0
𝑁2
𝑟

0
𝑁3
𝑟

0

−𝐽−1 −𝐽−1 0 𝐽−1 𝐽−1 0 ]
 
 
 
 

 

The element of the strain matrix are defined as, 

[

𝛿𝑁𝑖
𝛿𝑟
𝛿𝑁𝑖
𝛿𝑧

] = 𝐽−1

[
 
 
 
 
𝛿𝑁𝑖
𝛿𝜉
𝛿𝑁𝑖
𝛿𝜂 ]
 
 
 
 

 

Replacing the values in the original expression, 

K =∑wk B
TE B r J

1

1

=

=
1

2

[
 
 
 
 
−𝐽−1 0 𝐽−1 0 0 0

0 −𝐽−1 0 0 0 𝐽−1

𝑁1
𝑟

0
𝑁2
𝑟

0
𝑁3
𝑟

0

−𝐽−1 −𝐽−1 0 𝐽−1 𝐽−1 0 ]
 
 
 
 
𝑇

[
 
 
 
 
1 0 0 0
0 1 0 0
0 0 1 0

0 0 0
1

2]
 
 
 
 

[
 
 
 
 
−𝐽−1 0 𝐽−1 0 0 0

0 −𝐽−1 0 0 0 𝐽−1

𝑁1
𝑟

0
𝑁2
𝑟

0
𝑁3
𝑟

0

−𝐽−1 −𝐽−1 0 𝐽−1 𝐽−1 0 ]
 
 
 
 

𝑟 𝐽 

=
1

2
𝑟𝐽

[
 
 
 
 
 
 
 
 
 −𝐽−1 0

𝑁1
𝑟

−𝐽−1

0 −𝐽−1 0 −𝐽−1

𝐽−1 0
𝑁2
𝑟

0

0 0 0 𝐽−1

0 0
𝑁3
𝑟

𝐽−1

0 𝐽−1 0 0 ]
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
−𝐽−1 0 𝐽−1 0 0 0

0 −𝐽−1 0 0 0 𝐽−1

𝑁1
𝑟

0
𝑁2
𝑟

0
𝑁3
𝑟

0

−1

2𝐽

−1

2𝐽
0

1

2𝐽

1

2𝐽
0
]
 
 
 
 
 
 

= 

=

[
 
 
 
 
 
 
 
 
 
 
 
 𝐽−2 +

𝑁1
2

𝑟2
+
1

2𝐽2
1

2𝐽2
−𝐽−2 +

𝑁1𝑁2
𝑟2

−
1

2𝐽2
𝑁1𝑁3
𝑟2

−
1

2𝐽2
0

1

2𝐽2
𝐽−2 +

1

2𝐽2
0 −

1

2𝐽2
−
1

2𝐽2
−𝐽−2

−𝐽−2 +
𝑁1𝑁2
𝑟2

0 𝐽−2 +
𝑁2
2

𝑟2
0

𝑁2𝑁3
𝑟2

0

−1

2𝐽2
−1

2𝐽2
0

1

2𝐽2
1

2𝐽2
0

𝑁1𝑁3
𝑟2

−
1

2𝐽2
−1

2𝐽2
𝑁2𝑁3
𝑟2

1

2𝐽2
𝑁3
2

𝑟2
+
1

2𝐽2
0

0 −𝐽−2 0 0 0 𝐽−2 ]
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2) Show that the sum of the rows (and columns) 2, 4 and 6 of Ke must vanish and 

explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does 

not vanish, and explain why.  

The stiffness matrix will represent a force equilibrium, therefore it would be a singular matrix. 

But in this case due to the circumferential component is a nonsingular matrix. 

𝐾𝑒 =

[
 
 
 
 
 
 
 
 
 
 
 
 𝐽−2 +

𝑁1
2

𝑟2
+
1

2𝐽2
1

2𝐽2
−𝐽−2 +

𝑁1𝑁2
𝑟2

−
1

2𝐽2
𝑁1𝑁3
𝑟2

−
1

2𝐽2
0

1

2𝐽2
𝐽−2 +

1

2𝐽2
0 −

1

2𝐽2
−
1

2𝐽2
−𝐽−2

−𝐽−2 +
𝑁1𝑁2
𝑟2

0 𝐽−2 +
𝑁2
2

𝑟2
0

𝑁2𝑁3
𝑟2

0

−1

2𝐽2
−1

2𝐽2
0

1

2𝐽2
1

2𝐽2
0

𝑁1𝑁3
𝑟2

−
1

2𝐽2
−1

2𝐽2
𝑁2𝑁3
𝑟2

1

2𝐽2
𝑁3
2

𝑟2
+
1

2𝐽2
0

0 −𝐽−2 0 0 0 𝐽−2 ]
 
 
 
 
 
 
 
 
 
 
 
 

 

 ≠ 0 = 0 ≠ 0 = 0 ≠ 0 = 0  

 

 

3) Compute the consistent force vector fe for gravity forces b = [0, –g]T.  

The force vector due to body forces are, 

fext =∑wk N
T b r J

p

k

= wk

[
 
 
 
 
 
𝑁1 0
0 𝑁1
𝑁2 0
0 𝑁2
𝑁3 0
0 𝑁3]

 
 
 
 
 

[
𝑏𝑟
𝑏𝑧
] 𝑟 𝐽 = wk 𝐽 (𝑟1𝑁1 + 𝑟2𝑁2 + 𝑟3𝑁3) 

[
 
 
 
 
 
𝑁1𝑏𝑟
𝑁1𝑏𝑧
𝑁2𝑏𝑟
𝑁2𝑏𝑧
𝑁3𝑏𝑟
𝑁3𝑏𝑧]

 
 
 
 
 

 

Substituting the values of the problem, 

fext =
 𝐽

2
(0
1

3
+ 𝑎

1

3
+ 𝑎

1

3
) 

[
 
 
 
 
 
 
 
0
−𝑔

3
0
−𝑔

3
0
−𝑔

3 ]
 
 
 
 
 
 
 

=
𝑎2𝑏

9
 

[
 
 
 
 
 
0
−𝑔
0
−𝑔
0
−𝑔]
 
 
 
 
 

 


