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Practice 5
Exercise 1: Plane Frame

As a problem type for the task we used the compass fem with:

e 3D simulation dimension;

e Element type: beams and shells (also for the 2° exercises);
e Dynamic modal analysis;

e Linear-elastic material model;

e Linear geometry model.
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Figure 1 — Simulation Type

Afterwards we created the geometry in Tdyn. As constraints, we constrain the two nodes
at the bottom in all directions and the rest of the nodes only in z-direction and the
rotations around the x- and the y-axes because we have a plane frame.



The cross-section and the material of the beams are assigned according to the information

given in next figure.
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Figure 2 - Geometry and data
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Figure 3 - Geometry structure in Tdyn

At first we calculate with the dynamic analysis only the natural frequencies, and decide
afterwards which modal we must consider depending on the limiting equation where wp is



the frequency of the load and w0 is the maximum natural frequency which we must
consider.
The condition to perform a dynamic analysis is:
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After creating the mesh we did the first calculation which gives us the natural frequencies
of the structure.
The main natural frequency w1 is 4,292 Hz.

The first 10 natural frequencies and modal mass are:

Mode Fregq [Hz] Mass x [Kg] Mass x [%] Mass vy [Kg] Mass v [%] Mass z [Kg] Mass z [%]

1 5647  84.3840  1.557e-028 0.0000  3.664e-029 0.0000
2 12.74 586.3 8.7612  4.282e-029 0.0000 6.715e-028 0.0000
3 19.89 105.3 1.5731  2.155e-029 0.0000 1.575e-0289 0.0000
4 43.93  1.531=-028 0.0000 4071  60.8379 5.529e-028 0.0000
5 48.89  1.395e-028 0.0000 353.1 5.2772  8.999e-028 0.0000
6 53.31  6.312e-029 0.0000 682.8  10.2035 2.134e-028 0.0000
7 55.8  3.9062-033 0.0000 1.508e-027 0.0000 385.8 5.7647
8 55.8 8.3e-032 0.0000 3.795e-027 0.0000 1158  17.3089
9 55.8  2.965e-033 0.0000 2.718e-027 0.0000 1085  16.2122
10 75.26 0.3601 0.0054  4.05e-027 0.0000 4.045e-028 0.0000

Figure 4 -The first 10 natural frequencies of the structure
All this implies that the load frequency varies between:

e wp =3,219 Hz (=0,75 w0);
* wp=4,292 Hz (=1,00 w0);
e wp=5,365Hz(=1,25 w0).

To check the number of eigenmodes we have to consider that we use wp = 5,365 Hz which
allows us to use all natural frequencies which are smaller than 21,46 Hz. This means we
will consider the first three eigenmodes in our calculation.

To calculate the structure, we define the self-weight load and a dynamic punctual load of 1
second at the top left corner of the frame in x-direction.

The parameters of the load are shown in the next figure.
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Figure 5 — Apply Punctual load
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Figure 6 — Function variables for the first wp =3,219

To choose a time-step for the calculation we divide the period time of the maximum
frequency by 20:

T 1/w 1/5,365
_Y UCC / = 0,0093s

At =257"20 20

To get the required number of time step to show 1 s in total we divide 1s by the time step:
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Figure 7 - Dynamic analysis data for the modal analysis method

In the nexts figures there are the results with the differents load frequency useds.
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Figure 8 — Axial Force
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Figure 9 — Displacements in x direction

In figure 8 and figure 9 it can be observed that the maximum forces and displacements

occur in the case wp =1,00w1.

This is the resonance case because the frequency of the load is equal to the main natural

frequency of the structure. This is the worse cause from a structural point of view because
the forces and displacements are statically growing along the time. In the other two cases
where the loading frequency is smaller or bigger than the natural frequency the structure

has smaller forces and displacements.
The best case for the structure is a loading frequency which is bigger than the natural
frequency because in this case the forces and displacements reduce more with the time

than when the frequency is smaller than the natural frequency.




DIRECT INTEGRATION
With the direct integration method, the dynamic analysis is changed as following:

General
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Figure 10 - Dynamic analysis data for the direct integration method

In the nexts figures there are the results with the differents load frequency useds.
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Figure 12 — Displacements in x direction

The principal features that were observed for the modal analysis can be seen for the direct
integration as well (worst case=resonance case, best case=bigger frequency). But the
results are quite different for the values.



The results of the direct integration have bigger values for the same calculation even if the
form of the graphs are similar. But an advantage of the direct method is much calculation
time in contrast to the modal analysis.

The only huge difference is for axial force with the lowest frequency (also changing the
calculation with a smaller time step does not change the result).

Exercise 2: Spatial shell
To model the geometry we choose isotropic shells in Tdyn. As a problem type for the task
we used the compass fem with:

e 3D simulation dimension;

e Element type: beams and shells (also for the 1° exercises);
e Dynamic modal analysis;

e Linear-elastic material model;

e Linear geometry model.

We assumed that the structure is clamped at is base line and does not have other
constraint. For the mesh we used quadrilateral elements with 4 nodes.
The geometry and the mesh can be seen in nexts figures.

Figure 13 — Geometry structure in Tdyn



Figure 14 — Meshed structure in Tdyn

After creating the mesh we did the first calculation which gives us the natural frequencies
of the structure.
The main natural frequency w1l is 4,522 Hz.

The first 10 natural frequencies and modal mass are:

Mode Fregq [Hz Mass_x [Kg]l Mass_x [%] Mass_y [Egl Mass_y [%] Mass_z [Kg] Mass z [%]
1 6.22%e-023 0.0000 T942 29.6708 6035 22.5443
2 8.681 7742 28.9234 1.5e-022 0.0000 3.303e-023 0.0000
3 12.65 T7.013e-023 0.0000 2479 9.2625 1.581e+004 59.0465
4 19.9%94 231.1 0.8633 1.404e-023 0.0000 1.305e-023 0.0000
5 51.89 1.855e-026 0.0000 2088 7.8000 473.9 1.7703
6 57.14 1.238e-026 0.0000 T715.6 2.6734 150.6 0.5624
7 T72.77 322.6 1.2054 2.898%e-025 0.0000 1.288e-028 0.0000
8 84.27 1.268e+004 47.3585 1.478e-0286 0.0000 2.475e-0286 0.0000
9 106.8 4.176e-026 0.0000 91.6 0.3422 1869 6.9834

10 1le6.9 844.1 3.1536 2.537e-027 0.0000 1.74e-025 0.0000

Figure 15 —The first 10 natural frequencies of the structure
All this implies that the load frequency varies between:

e wp =3,392 Hz (=0,75 w0);
e wp=4,522 Hz (=1,00 w0);
e wp=5,653Hz(=1,25 w0).

This is the condition to perform a dynamic analysis:
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To check the number of eigenmodes we have to consider that we use wp = 5,653 Hz which
allows us to use all natural frequencies which are smaller than 22,612 Hz. This means we
will consider the first four eigenmodes in our calculation.



To choose a time-step for the calculation we divide the period time of the maximum
frequency by 20:

T 1/0max 1/5653
20 20 20

At = 0,0088s

To get the required number of time step to show 1 s in total we divide 1s by the time step:

1s B 1 B
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113,6 = 114

We apply the self-weight load and the dynamical sinus pressure load on the top surface.
The frequency varies for the 3 different loads we apply. The pressure load has an
amplitude of 50 kN/m? and ends at 1 second.
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Figure 16 — Apply Pressure load
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Figure 17 — Function variables for the first wp =3,392



RESULTS

The results for the different load frequencies are shown in the following figures. We
decided to compare the displacement at the outer edge of the shell cantilever (green circle

in the next figure).
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Figure 18 — Structure made
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Figure 19 — Displacements in y direction
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Figure 20 — Displacements in y direction




Like in the first part of the task, that the displacement grows the most when the load
frequency is equal to the first eigenfrequency of the structure (wp=1.0w1). It is called the
resonance case. And the best case for the structure is when the loading frequency is higher
than the first eigenfrequency of the structure (wp=1.25w1), because in this case the
displacement will decrease by time.

The results of the modal analysis and the direct method are quite different again,
regarding to their values, while their appearance is still looking similar. The direct method
is again leading to higher values on the one hand, but on the other hand it is beneficial for
the computational time.

We can state that it is important to study the frequencies of the dynamic loads of a
structure and compare them to the eigenfrequencies. Because when they are getting close
or even the same it will result to very high and increasing stresses and displacements of
the structure. It is always better to choose or make the frequencies different to avoid this
case. The best case for the structural behavior of the structure is a higher loading
frequency than the eigenfrequency.



