MASTER OF SCIENCE IN COMPUTATIONAL MECHANICS UNIVERSIDAD POLITÉCNICA DE CATALUÑA

Subject: Computational Structural Mechanics and dynamics
Student: ANTONIO SOLITO

Practice 4

Exercise 1: Cylindrical tank

3D CASE
Geometry
Define the geometry of the structure in the preprocessor of Tdyn:

Figure 1 - Geometry of the structure

Figure 2 - Geometry of the lower structure

Figure 3 - Geometry of the high structure

Figure 4-Geometry of the structure in the 3D view

Figure 5 - Geometry of the high structure in the 3D view

Figure 6 - Other figure of the high structure in 3D view

Figure 7 - Geometry of the structure in the flat view

Figure 8-Other figure of the structure in flat view

Figure 9-Geometry of the high structure in the flat view

Data

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved. In this case we face a swell on 3D so we chose the following work options.

- Simulation type: Structural analysis;
- Simulation dimension: 3D;
- Element types: Shells;
- Analysis type: Static analysis;
- Material constitutive model: Linear-elastic model;
- Geometric constitutive model: Linear geometry;
- Gravity: Negative Y direction;
- Units system: Int. system (SI) - N,m,Pa;
- Geometry units: m.

Boundary conditions:

The types of boundary conditions that are enforced in this exercise are the following:

- Constraints - Fixed constraints.

Figure 10 - Fixed constraints

Materials and properties:

We use the material for the parts of the structure with the following mechanical characteristics.

Figure 11 - Material

Load－cases

b 角 Simulation data
b 角 Simulation data

1. General data
\downarrow Constraints
\downarrow Local axes
b. Materials and properties
∇ 迅Loadcases
 - 进 Combined LC

- 珻Loadcase 1
 - U LoadCase properties
14 Punctual load
∇ 地Shells
\rightarrow IVPressure load
∇ group: Pressure load
1 Factor: 1.0
\square Load type: local
$\square \mathrm{X}$ pressure: 0.0 Pa
$\square \mathrm{Y}$ pressure: 0.0 Pa
(1) p pressure: $10000.0 \mathrm{~N} / \mathrm{m}^{2}$
坞 Boundary pressure load
. 14 Self weight load
III Thermal strain load
I\# Strain load
14 Tdyn pressure load
14 Seakeeping wave load
Ground acceleration
14 Custom load
LCustom constraints

Figure 12 －Options for the load

Figure 13 －Representation of the pressure load in the tank

Meshing / Generate: To generate the mesh we have used the following option:

- For elements with three nodes: Quadratic type= Normal; Element type= Triangle.

Figure 14 - Meshe of elements with three nodes

Figure 15 - Other view of the meshe of elements with three nodes

Figure 16 - Other view of the meshe of elements with three nodes

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the different meshe proposed.

File / Post Process

The following figures show the results of the analysis sought after in this exercise.

RESULTS WITH ELEMENTS OF 3 NODES

Figure 17 - Stresses Top Sx

Figure 18 - Stresses Top Sy

Figure 19 - Stresses Top Sz

Figure 20 - Displacements

Figure 21 - Qy

Figure 22 - Von Mises

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 23-Geometry of the structure

Figure 24-Geometry of the spherical cupola

Data

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved. In this case we face a revolutions shells problem; therefore we choose the module RamSeries_Educational_2D/Rev_Shell using the following sequence of commands:

> Data / Problem Type / RamSeries_Eductional_2D / Rev_Shell

Boundary conditions:

The types of boundary conditions that are enforced in this exercise are the following:

- Displacements Constraints / Point Constraints.

Figure 25 - Point Constraints

- Loads / Uniform loads.

Figure 26 - Uniform loads

Figure 27 - All conditions on the structure
Material: We use material with the following mechanical characteristics.

Figure 28 - Material

Meshing / Generate: To generate the mesh we have used the following option:

- For elements with two nodes: Quadratic type= Normal;

Figure 29 - Meshe with nodes numbered

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the meshe proposed.

File / Post Process
The following figures show the results of the analysis sought after in this exercise.

RESULTS WITH ELEMENTS OF 2 NODES

Figure 30 - Displacements

Figure 31 - Ms

Figure 32 - Ns

Figure 33 - Rotations

Figure 34 - Qy

