MASTER OF SCIENCE IN COMPUTATIONAL MECHANICS UNIVERSIDAD POLITÉCNICA DE CATALUÑA

Subject: Computational Structural Mechanics and dynamics Student: ANTONIO SOLITO

Practice 3

Exercise 1: Clamped plate with a uniform load Solution

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 1 - Geometry of the structure

<u>Data</u>

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved. In this case we face a plates problem; therefore we choose the module RamSeries_Educational_2D/Plates using the following sequence of commands:

Data / Problem Type / RamSeries_Eductional_2D / Plates

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

• Displacements Constraints / Linear Constraints.

Figure 2 – Linear Constraints

• Loads / Uniform loads.

Figure 3 – Uniform load

Figure 4 – All conditions on the plate

Material: We use material with the following mechanical characteristics.

Meshing / Generate: To generate the mesh we have used the following options:

- For DKT elements: Quadratic type= Normal; Element type= Triangle.
- For CLLL elements: Quadratic type= Normal; Element type= Quadrilateral.
- For RM elements: Quadratic type= Quadratic; Element type= Triangle.

Figure 6 - Meshe of DKT elements

Figure 8 – Meshe of CLLL elements

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the different meshes proposed.

File / Post Process

The following figures show the results of the analysis sought after in this exercise.

TRIANGULAR ELEMENTS WITH 3 NODES (DKT)

TRIANGULAR ELEMENTS WITH 6 NODES (RM)

Figure 13 – Stresses My

QUADRILATELAR ELEMENTS WITH 4 NODES (CLLL)

Exercise 2: Thin plate with internal hole Solution

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 18 - Geometry of the structure

<u>Data</u>

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved. In this case we face a plates problem; therefore we choose the module RamSeries_Educational_2D/Plates using the following sequence of commands:

Data / Problem Type / RamSeries_Eductional_2D / Plates

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

• Displacements Constraints / Surface Constraints.

Figure 19 – Surface Constraints

• Loads / Uniform loads.

Figure 20 – Uniform load

Figure 21 – All conditions on the plate

Material: We use material with the following mechanical characteristics.

Meshing / Generate: To generate the mesh we have used the following option:

• For DKT elements: Quadratic type= Normal; Element type= Triangle.

Figure 23 – Meshe of DKT elements

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the meshe proposed.

File / Post Process

The following figures show the results of the analysis sought after in this exercise.

TRIANGULAR ELEMENTS WITH 3 NODES (DKT)

Figure 26 – Displacements

Figure 28 – Reaction Force

Exercise 3: Thick circular plate with internal hole Solution

<u>Geometry</u>

Define the geometry of the structure in the preprocessor of Gid:

Figure 29 - Geometry of the structure

<u>Data</u>

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved. In this case we face a plates problem; therefore we choose the module RamSeries_Educational_2D/Plates using the following sequence of commands:

Data / Problem Type / RamSeries_Eductional_2D / Plates

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

• Displacements Constraints / Surface Constraints.

Figure 30 – Surface Constraints

• Loads / Uniform loads.

Figure 31 – Uniform load

Figure 32 – All conditions on the plate

Material: We use material with the following mechanical characteristics.

Figure 33 – Material

Meshing / Generate: To generate the mesh we have used the following option:

• For RM elements: Quadratic type= Quadratic; Element type= Triangle.

Figure 34 – Meshe of RM elements

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the meshe proposed.

File / Post Process

The following figures show the results of the analysis sought after in this exercise.

TRIANGULAR ELEMENTS WITH 6 NODES (RM)

Figure 37 – Displacements

