MASTER OF SCIENCE IN COMPUTATIONAL MECHANICS UNIVERSIDAD POLITÉCNICA DE CATALUÑA

Subject: Computational Structural Mechanics and dynamics
Student: ANTONIO SOLITO
Practice 2

Exercise 1: Circular tank

Solution
Geometry
Define the geometry of the structure in the preprocessor of Gid:

Figure 1 - Geometry of the structure

Data

Problem Type:
Once the geometry is defined, we can see which type of problem must be solved. In this case we face a revolution solids problem; therefore we choose the module RamSeries_Educational_2D/Rev Solids using the following sequence of commands:

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

- Displacements Constraints / Linear Constraints.

Figure 2 - Displacement Constraints

- Elastic Constraints (for the ground).

Figure 3 - Elastic Constraints

- Loads / Line loads / Uniform loads. On the bottom of the platform there is a uniform pressure, while in the lateral bulkhead there is calculated a triangular pressure and arranged as seen in figure.

Figure 4 - The uniform load on the bottom plus the triangular load on the lateral bulkhead

Material: We use material with the following mechanical characteristics.

Figure 5 - Material

Meshing / Generate To generate the mesh use the following options:

- Element Type: We use a mesh of quadrilateral elements (Quadrilateral).
- Quadratic elements: We consider linear elements with 4 nodes (Normal).

Figure 6 - Mesh of Quadrilaterals Normal

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the mesh proposed.
File / Post Process The following figures show the results of the analysis sought after in this exercise.

QUADRILATERAL ELEMENTS WITH 4 NODES

Figure 7 - Displacements on axis x

Figure 8 - Displacements on axis y

Figure 9 - Stress on axis x

Figure 10 - Stress on axis y

Exercise 2: Analysis of the flexion of a beam using hexahedra elements

Solution

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 11 - Geometry of the structure

Figure 12 - Geometry of the structure in another view

Figure 13-Geometry of the structure in flat view

Data

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved. In this case we face a solids on 3D; therefore we choose the module RamSeries_Educational_2D/3D Solids using the following sequence of commands:

Data / Problem Type / RamSeries_Eductional_2D / 3D_Solids

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

- Displacements Constraints / Surface Constraints.

Figure 14 - Surface Constraint

Figure 15 - Surface Constraint on 3D view

- Loads / Line loads / Uniform loads. Point load on the two points of the front surface not bound.

Figure 16 - Points loads

Figure 17 - Points loads on 3D view

Material: We use material with the following mechanical characteristics.

Figure 18 - Material

Meshing / Generate To generate the mesh use the following options:

- Element Type: We use a mesh of Hexahedra elements.
- Quadratic elements: We consider linear elements with 8 nodes (Normal) and with 20 nodes (Quadratic).

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the mesh proposed.
File / Post Process The following figures show the results of the analysis sought after in this exercise.

HEXAHEDRA ELEMENTS WITH 8 NODES

Figure 19 - Mesh of Hexahedra Normal

Figure 20 - Displacements on axis x

Disp-Y (m) $8.4077 \mathrm{e}-09$ 6.5393e-09 $4.6709 \mathrm{e}-09$ 2.8026e-09 -9.3418e-10 $-9.3419 \mathrm{e}-10$ -2.8026e-09 -4.6709e-09 -6.5393e-09 -8.4077e-09

Figure 21 - Displacements on axis y

Figure 22 - Displacements on axis z

Figure 23 - Stresses on axis x

Figure 24 - Stresses on axis y

Figure 25 - Stresses on axis z

HEXAHEDRA ELEMENTS WITH 20 NODES

Figure 26 - Mesh of Hexahedra Quadratic (2D)

Figure 27 - Mesh of Hexahedra Quadratic (3D)

Figure 28 - Displacements on axis x

Figure 29 - Displacements on axis y

Contour Fill of Displacements, Disp-Z (m).
Figure 30 - Displacements on axis z

Figure 31 - Stresses on axis x

Figure 32 - Stresses on axis y

Contour Fill of Stresses_TS, Sz (N/m2).
Figure 33 - Stresses on axis z

Exercise 3: Foundation of a corner column

Solution

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 34 - Geometry of the structure (upper part)

Figure 35 - Geometry of the structure (central part)

Figure 36 - Geometry of the structure (bottom)

Figure 37 - Geometry of the structure

Figure 38-Geometry of the structure in flat view

Data

Problem Type:
Once the geometry is defined, we can see which type of problem must be solved. In this case we face a solids on 3D; therefore we choose the module RamSeries_Educational_2D/3D Solids using the following sequence of commands:

Data / Problem Type / RamSeries_Eductional_2D / 3D_Solids

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following: Displacements Constraints / Surface Constraints.

Figure 39 - Surface Constraint

Figure 40 - Surface Constraint from another view

- Loads / Line loads / Uniform loads. Setting the eccentric load on the upper face on the corner with the command "Global Proyected pressure".

Figure 41 - Eccentric load on the upper face

Figure 42 - Eccentric load on the upper face (zoom)

- Elastic Constraints (for the ground).

Figure 43 - Elastic Constraints

Material: We use material with the following mechanical characteristics.

Figure 44 - Material

Meshing / Generate To generate the mesh use the following options:

- Element Type: We use a mesh of Hexahedra elements.
- Quadratic elements: We consider linear elements with 8 nodes (Normal).

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the mesh proposed.
File / Post Process The following figures show the results of the analysis sought after in this exercise.

HEXAHEDRA ELEMENTS WITH 8 NODES

Figure 45 - Mesh of Hexahedra Normal (upper part)

Figure 46 - Mesh of Hexahedra Normal (central part)

Figure 47 - Mesh of Hexahedra Normal (bottom)

Figure 48 - Mesh of Hexahedra Normal

Figure 49 - Displacements on axis x

Figure 50 - Displacements on axis y

Figure 51 - Displacements on axis z

Figure 52 - Stresses on axis x

Figure 53 - Stresses on axis y

Figure 54-Stresses on axis z

