MASTER OF SCIENCE IN COMPUTATIONAL MECHANICS UNIVERSIDAD POLITÉCNICA DE CATALUÑA

Subject: Computational Structural Mechanics and dynamics
Student: ANTONIO SOLITO

Practice 1

Exercise 1: Thin plate under dead weight
Solution

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 1 - Geometry of the structure

Data

Problem Type:
Once the geometry is defined, we can see which type of problem must be solved.
In this case we face a plane problem; therefore we choose the module
RamSeries_Educational_2D/Plane State using the following sequence of commands:

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

- Displacements Constraints / Point Constraints.
- Displacements Constraints / Linear Constraints.

Figure 2 - Displacement Constraints

Material: We use material with the following mechanical characteristics.

Figure 3 - Material

Problem Data: In this section we specify some data necessary for the analysis.

Figure 4 - Consider Self weight on the problem data

Figure 5 - Units on the problem data

Meshing / Generate To generate the mesh use the following options:

- Structured: The mesh is structured using 16 segments for the horizontal lines and 16 for the vertical lines.
- Element Type: We use a mesh of triangular (Triangle) and quadrilateral elements (Quadrilateral).
- Quadratic elements: We consider linear elements with 3 and 4 nodes (Normal) and quadratic elements with 6, 8 and 9 nodes (Quadratic and Quadratic9).

Figure 6 - Meshe of Triangles Normal

Figure 7 - Meshe of Quadrilaterals Normal
(

Figure 8 - Meshe of Quadrilaterals Quadratic

Figure 9 - Meshe of Triangles Quadratic

Figure 10 - Meshe of Quadrilaterals Quadratic whit 9 nodes

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the different meshes proposed.

File / Post Process

The following figures show the results of the analysis sought after in this exercise.

QUADRILATERAL ELEMENTS WITH 4 NODES

Figure 11 - Displacements on axis y

Figure 12 - Stress on axis y

TRIANGULAR ELEMENTS WITH 3 NODES

Figure 13 - Displacements on axis y

Figure 14 - Stress on axis y

TRIANGULAR ELEMENTS WITH 6 NODES

Figure 15 - Displacements on axis y

Figure 16 - Stress on axis y

QUADRILATERAL ELEMENTS WITH 8 NODES

Figure 17 - Displacements on axis y

Figure 18 - Stress on axis y

QUADRILATERAL ELEMENTS WITH 9 NODES

Figure 19 - Displacements on axis y

Figure 20 - Stress on axis y

Comparison of the results

Using the results of the analysis with the different types of elements, the following comparison table was set up:

Element type	Degrees of freedom	Stress in B [MN/m2]	Displacement y in the centreof the side ED	err Displ y \%	err Stress y \%
Triangle with 3 nodes	289	0.24164	$-2.3022 \mathrm{E}-06$	-1.87	2.17
Triangle with 6 nodes	1089	0.24861	$-2.3022 \mathrm{E}-06$	-1.87	-0.65
Quadrilateral with 4 nodes	289	0.24164	$-2.3022 \mathrm{E}-06$	-1.87	2.17
Quadrilateral with 8 nodes	833	0.24861	$-2.3022 \mathrm{E}-06$	-1.87	-0.65
Quadrilateral with 9 nodes	1089	0.24977	$-2.3022 \mathrm{E}-06$	-1.87	-1.12

Exercise 2: Plate with two sections

Solution

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 21 - Geometry of the structure

Data

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved.
In this case we face a plane problem; therefore we choose the module
RamSeries_Educational_2D/Plane State using the following sequence of commands:

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

- Displacements Constraints / Linear Constraints.

Figure 22 - Displacement Constraints

- Loads / Line loads / Uniform loads.

Figure 23 - Uniform loads

Material: We use material with the following mechanical characteristics.

Figure 24 - Material

Problem Data: In this section we specify some data necessary for the analysis.

Figure 25 - General data

Figure 26 - Units for the problem data
Meshing / Generate To generate the mesh use the following options:

- Element Type: We use a mesh of triangular (Triangle).
- Quadratic elements: We consider linear elements with 3 (Normal).

Figure 27 - Meshe of Triangles Normal

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the meshe proposed.

File / Post Process

The following figures show the results of the analysis sought after in this exercise.

TRIANGULAR ELEMENTS WITH 3 NODES

Figure 28 - Displacements on axis y

Figure 29 - Stress on axis y

Element type	Degrees of freedom
Triangular with 3 nodes	1179

Exercise 3: Plate with ventilation hole

Geometry

Define the geometry of the structure in the preprocessor of Gid whit 2 layers:

Figure 30 - Layer for Steel

Figure 31 - Layer for Concrete.

Figure 32 - The combination of the two layers.

Data

Problem Type:

Once the geometry is defined, we can see which type of problem must be solved. In this case we face a plane problem; therefore we choose the module RamSeries_Educational_2D/Plane State using the following sequence of commands:

Data / Problem Type / RamSeries_Eductional_2D / Plane State

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

- Displacements Constraints / Linear Constraints.

Figure 33 - Displacements Constraints

- Loads / Line loads / Uniform loads.

Figure 34 - Uniforms loads

Figure 35 - Displacements Constraints + Uniform loads

Material: We use material with the following mechanical characteristics.

Figure 36 - Characteristics for the Steel

Figure 37 - Characteristics for the Concrete

Problem Data: In this section we specify some data necessary for the analysis.

Figure 38 - Problem data

Figure 39 - Units for the problem data

Meshing / Generate To generate the mesh use the following options:

- Element Type: We use a mesh of quadrilateral elements (Quadrilateral).
- Quadratic elements: We consider linear elements with 4 nodes (Normal).

Figure 40 - Meshe of Quadrilaterals Normal

Figure 41 - Meshe of Quadrilaterals Normal (Visual Flat)

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the meshe proposed.

File / Post Process

The following figures show the results of the analysis sought after in this exercise.

QUADRILATERAL ELEMENTS WITH 4 NODES

Figure 42 - Displacements on axis y

Figure 43 - Stress on axis y

Element type	Degrees of freedom
Quadrilateral with 4 nodes	2332

Exercise 4: Prismatic water tank

Geometry

Define the geometry of the structure in the preprocessor of Gid:

Figure 44-Geometry of the structure

Data

Problem Type:
Once the geometry is defined, we can see which type of problem must be solved.
In this case we face a plane problem; therefore we choose the module
RamSeries_Educational_2D/Plane State using the following sequence of commands:

Data / Problem Type / RamSeries_Eductional_2D / Plane State

Boundary conditions:

The types of boundary conditions that are enforced in this example are the following:

- Elastic Constraints (for the ground).

Figure 45 - Elastic Constraints

- Loads / Line loads / Uniform loads. On the bottom of the platform there is a uniform pressure, while in the lateral bulkhead there is calculated a triangular pressure and arranged as seen in figure.

Figure 46 - The uniform load on the bottom plus the triangular load on the lateral bulkhead (in the box there are the settings for the triangular load)

Material: We use material with the following mechanical characteristics.

Figure 47 - Material

Problem Data: In this section we specify some data necessary for the analysis.

Figure 48 - Problem data

Figure 49 - Units for the problem data

Meshing / Generate To generate the mesh use the following options:

- Element Type: We use a mesh of quadrilateral elements (Quadrilateral).
- Quadratic elements: We consider linear elements with 4 nodes (Normal).

Figure 50 - Meshe of Quadrilaterals Normal

Calculate / Calculate

Once the mesh is generated, we proceed to calculate the problem for the meshe proposed.
File / Post Process The following figures show the results of the analysis sought after in this exercise.

QUADRILATERAL ELEMENTS WITH 4 NODES

Figure 51 - Displacements on axis x

Figure 52 - Displacements on axis y

Contour Fill of Stresses_PS, Sx (N/m2).

Figure 53 - Stress on axis x

Figure 54 - Stress on axis y

Element type	Degrees of freedom
Quadrilateral with 4 nodes	152

