

Scanned by CamScanner

-> solution:

To add all the shape functions -

$$N_1(\xi_1) + N_2(\xi_1) + N_3(\xi_1) = (a_0 + a_1\xi_1 + a_2\xi_1^2) + (b_0 + b_1\xi_1 + b_2\xi_1^2) + (c_0 + c_1\xi_1 + c_2\xi_1^2)$$

substitute the coefficient values,

$$N_1 + N_2 + N_3 = (0 - \frac{1}{2}\xi_1 + \frac{1}{2}\xi_1^2) + (0 + \frac{1}{2}\xi_1 + \frac{1}{2}\xi_2^2) +$$

N1 + N2 + N3 = 1

(a) Calculate the derivatives with gespect to ratural co-ordinates. (&)

Solution:

(i)
$$N_1 = \frac{-1}{2} \xi_1 + \frac{1}{2} \xi_1^2$$

ie.
$$\frac{\partial h_1}{\partial \xi_1} = \frac{1}{2}$$

(ii)
$$N_2 = \frac{1}{2} \xi_1 + \frac{1}{2} \xi_1^2$$

$$\frac{\partial n_2}{\partial \xi_1} = \frac{1}{2} \xi_1 + \xi_1^2$$
ie, $\frac{\partial n_2}{\partial \xi_2} = \xi_1 + \frac{1}{2}$

ie,
$$\frac{\partial N_2}{\partial \mathcal{E}} = \mathcal{E} + \frac{1}{2}$$

Scanned by CamScanner

addings all shape functions -
$$N_1 + N_2 + N_3 + N_4 + N_5 = \left[\frac{1}{4}(\xi_{-1})(\eta_{-1}) - \frac{1}{4}(\xi_{-1}^2)(\eta_{-1}^2)\right] + \left[\frac{1}{4}(\xi_{+1})(\eta_{-1}) - \frac{1}{4}(\xi_{-1}^2)(\eta_{-1}^2)\right] + \left[\frac{1}{4}(\xi_{+1})(\eta_{+1}) - \frac{1}{4}(\xi_{-1}^2)(\eta_{-1}^2)\right] + \left[\frac{1}{4}(\xi_{-1})(\eta_{-1}^2)\right] + \left[\frac{1}{4}(\xi_$$

on simplifying,

$$N_{1}+N_{2}+N_{3}+N_{4}+N_{5} = \underbrace{\frac{2}{4}}_{4} - \underbrace{\frac{2}{4}}_{4} - \underbrace{\frac{2}{4}}_{4} - \underbrace{\frac{2}{4}}_{4} + \underbrace{\frac{2}$$

ie.
$$N_1 + N_2 + N_3 + N_4 + N_5 = 1$$

@ 8 node Hexahedown -

n=8, nf=24, nR=6, nE=3.

Eark Sufficiency (x) = nF-nR = 24-86 = 18

Rank sufficiency condition: $n_E n_g > n_E - n_R$ ie, $3n_g > 18$ or, Required gauss rule to altain rank sufficiency is $2 \times 2 \times 2$ rule

6) 20 node hexahedron -

n= 20 nr = 60 nr = 6 nE = 3

2 = NF-NR = 60 - 6 = 54

:, Condition is -

Required gauss rule to attain rank sufficiency is, ie [ng = 27]

@ 27 node hexahedron -

n = 27, ne = 81 ne = 6 ne = 3

2 = NF-NR = 81-6 = 75

Condition is .

Required gauss rule to attain rank sufficiency is ie. [ng = 27]

@ 64 node hexahedron -

N = 64 NF = 192 NR = 6 NE = 3 R = 192 - 6 = 186

Condition for early sufficiency is

NENg > nF-NR

3ng > 186

ng > 62

Required gauss rule to altain rank sufficiency is.

ie. [ng = 64]

Rank Sufficient Gauss Rule:

07	4			8 (1951 And 1951 And	
Element	n	NF (3n)	AF-AB (NB=6)	Minng	Product Rule
+ 8 node hexahedoon	8	24	18	6	2×2×2
- 20 node hexahedron	20	60	54	18	3×3×3
- 27 node hexahedron	27	81	75	25	3×3×3
hexahedron	64	192	186	62	4×4×4