Assignment 5

Samadrita Karmakar

March 9, 2018

PROBLEM 5.1

a)

The Formulation of Shape Function has been done by Direct Method

$N_{1}^{e}(\xi)=a_{0}+a_{1} \xi+a_{2} \xi$ Let, $N_{1}^{e}=c_{f 1} \xi(\xi-1)$ at node $1, N_{1}^{e}=1$ Hence, $\rightarrow 1=c_{f 1} \xi(\xi-1)$
putting $\xi=-1$, the value of Node 1,
we have,
$\rightarrow c_{f 1}=\frac{1}{2}$
so, $N_{1}^{e}=\frac{-1}{2} \xi+\frac{1}{2} \xi^{2}$

$$
N_{2}^{e}(\xi)=b_{0}+b_{1} \xi+b_{2} \xi
$$

Let, $N_{2}^{e}=c_{f 2} \xi(\xi+1)$ at node 2, $N_{2}^{e}=1$ Hence,
$\rightarrow 1=c_{f 2} \xi(\xi+1)$
putting $\xi=1$, the value of Node 2,
we have,
$\rightarrow c_{f 2}=\frac{1}{2}$
so, $N_{2}^{e}=\frac{1}{2} \xi+\frac{1}{2} \xi^{2}$

$$
N_{2}^{e}(\xi)=c_{0}+c_{1} \xi+c_{2} \xi
$$

Let, $N_{2}^{e}=c_{f 3}(\xi-1)(\xi+1)$ at node $3, N_{3}^{e}=1$ Hence, $\rightarrow 1=c_{f 3}(\xi-1)(\xi+1)$
putting $\xi=0$, the value of Node 3,
we have,
$\rightarrow c_{f 3}=-1$
so, $N_{3}^{e}=1-\xi^{2}$
Hence we have,
$a_{0}=0 ; a_{1}=-\frac{1}{2} ; a_{2}=\frac{1}{2}$
$b_{0}=0 ; b_{1}=\frac{1}{2} ; b_{2}=\frac{1}{2}$
$c_{0}=1 ; c_{1}=0 ; c_{2}=-1$
b)

Sum of Shape functions $=N_{1}^{e}+N_{2}^{e}+N_{3}^{e}$
$=-\frac{1}{2} \xi+\frac{1}{2} \xi^{2}+\frac{1}{2} \xi+\frac{1}{2} \xi^{2}+1-\xi^{2}$
$=1$
c)

$$
\begin{aligned}
& \frac{d N_{1}^{e}}{d \xi}=-\frac{1}{2}+\xi \\
& \frac{d N_{2}^{e}}{d \xi}=\frac{1}{2}+\xi \\
& \frac{d N_{2}^{e}}{d \xi}=-2 \xi
\end{aligned}
$$

PROBLEM 5.2

We will be using the hierarchial approach for this problem We first solve for N_{5}^{e}
Let, $N_{5}^{e}=c_{5}(\xi+1)(\xi-1)(\eta-1)(\eta+1)$
putting $N_{5}^{e}=1$ and $\xi=1$ we have,
$c_{5}=1$
so, $N_{5}^{e}=(\xi+1)(\xi-1)(\eta-1)(\eta+1)$
Now,
Let, $N_{1}^{e}=c_{1}(\xi-1)(\eta-1)$
putting $N_{1}^{e}=1, \xi=-1$ and $\eta=-1$ we have
$\rightarrow c_{1}=\frac{1}{4}$
so, $N_{1}^{e}=\frac{1}{4}(\xi-1)(\eta-1)$

Now,
Let, $N_{2}^{e}=c_{2}(\xi+1)(\eta-1)$
putting $N_{2}^{e}=1, \xi=1$ and $\eta=-1$ we have
$\rightarrow c_{2}=-\frac{1}{4}$
so, $N_{2}^{e}=-\frac{1}{4}(\xi+1)(\eta-1)$

Now,
Let, $N_{3}^{e}=c_{3}(\xi+1)(\eta+1)$
putting $N_{3}^{e}=1, \xi=1$ and $\eta=1$ we have
$\rightarrow c_{3}=\frac{1}{4}$
so, $N_{3}^{e}=\frac{1}{4}(\xi+1)(\eta+1)$

Now,
Let, $N_{4}^{e}=c_{4}(\xi-1)(\eta+1)$
putting $N_{4}^{e}=1, \xi=-1$ and $\eta=1$ we have
$\rightarrow c_{4}=-\frac{1}{4}$
so, $N_{4}^{e}=-\frac{1}{4}(\xi-1)(\eta+1)$

Considering N_{1} over node 5,
$N_{1}^{e}=\frac{1}{4}(\xi-1)(\eta-1)+g_{1}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
at node $5, \xi=0, \eta=0, N_{1}^{e}=0$
we get
$g_{1}=-\frac{1}{4}$
so, $N_{1}^{e}=\frac{1}{4}(\xi-1)(\eta-1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$

Considering N_{2} over node 5 ,
$N_{2}^{e}=-\frac{1}{4}(\xi+1)(\eta-1)+g_{2}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
at node $5, \xi=0, \eta=0, N_{2}^{e}=0$
we get
$g_{2}=-\frac{1}{4}$
so, $N_{2}^{e} \stackrel{4}{=}-\frac{1}{4}(\xi+1)(\eta-1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$

Considering N_{3} over node 5,
$N_{3}^{e}=\frac{1}{4}(\xi+1)(\eta+1)+g_{3}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
at node $5, \xi=0, \eta=0, N_{3}^{e}=0$
we get
$g_{3}=-\frac{1}{4}$
so, $N_{3}^{e}=+\frac{1}{4}(\xi+1)(\eta+1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
Considering N_{4} over node 5,
$N_{4}^{e}=-\frac{1}{4}(\xi-1)(\eta+1)+g_{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
at node $5, \xi=0, \eta=0, N_{4}^{e}=0$
we get
$g_{4}=-\frac{1}{4}$
so, $N_{4}^{e}=+-\frac{1}{4}(\xi-1)(\eta+1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
$N_{1}^{e}+N_{2}^{e}+N_{3}^{e}+N_{4}^{e}+N_{5}^{e}=$
$\frac{1}{4}(\xi-1)(\eta-1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
$-\frac{1}{4}(\xi+1)(\eta-1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
$+\frac{1}{4}(\xi+1)(\eta+1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
$-\frac{1}{4}(\xi-1)(\eta+1)-\frac{1}{4}\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)$
$+\left(\eta^{2}-1\right)\left(\xi^{2}-1\right)=1$

Problem 5.3

$n_{E} n_{G}>=n_{F}-n_{R}$
For Hexahedron,
$n_{E}=6$, order of the stress-stain matrix \mathbf{E}
n_{G} is the Number of Gauss Points
$n_{F}=n \times 3$ Number of Degrees of Freedom where n is the number of nodes $n_{R}=6$ Number of Independent Rigid Body Modes

n				
n	n_{F}	$n_{F}-6$	Recomended Rule	
8	24	18	$2 \times 2 \times 2$	

