Assignment 5

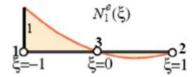
Samadrita Karmakar

March 9, 2018

PROBLEM 5.1

a)

The Formulation of Shape Function has been done by Direct Method



 $N_1^e(\xi) = a_0 + a_1 \xi + a_2 \xi$ Let, $N_1^e = c_{f1} \xi(\xi - 1)$ at node 1, $N_1^e = 1$ Hence,

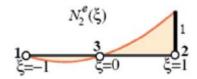
$$\to 1 = c_{f1}\xi(\xi - 1)$$

putting $\xi = -1$, the value of Node 1,

$$\rightarrow c_{f1} = \frac{1}{2}$$

$$c_{f1} = \frac{1}{2}$$

so, $N_1^e = \frac{-1}{2}\xi + \frac{1}{2}\xi^2$



$$N_2^e(\xi) = b_0 + b_1 \xi + b_2 \xi$$

Let, $N_2^e = c_{f2}\xi(\xi + 1)$ at node 2, $N_2^e = 1$ Hence,

$$\to 1 = c_{f2}\xi(\xi+1)$$

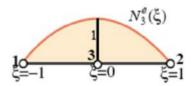
putting $\xi = 1$, the value of Node 2,

we have,

$$\rightarrow c_{f2} = \frac{1}{2}$$

$$c_{f2} = \frac{1}{2}$$

so, $N_2^e = \frac{1}{2}\xi + \frac{1}{2}\xi^2$



$$N_2^e(\xi) = c_0 + c_1 \xi + c_2 \xi$$

Let, $N_2^e = c_{f3}(\xi - 1)(\xi + 1)$ at node 3, $N_3^e = 1$ Hence,

$$\rightarrow 1 = c_{f3}(\xi - 1)(\xi + 1)$$

putting $\xi = 0$, the value of Node 3,

we have,

$$\begin{array}{l} \rightarrow c_{f3} = -1 \\ \text{so, } N_3^e = 1 - \xi^2 \\ \text{Hence we have,} \\ a_0 = 0; a_1 = -\frac{1}{2}; a_2 = \frac{1}{2} \\ b_0 = 0; b_1 = \frac{1}{2}; b_2 = \frac{1}{2} \\ c_0 = 1; c_1 = 0; c_2 = -1 \end{array}$$

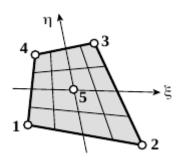
b)

Sum of Shape functions =
$$N_1^e + N_2^e + N_3^e$$

= $-\frac{1}{2}\xi + \frac{1}{2}\xi^2 + \frac{1}{2}\xi + \frac{1}{2}\xi^2 + 1 - \xi^2$
= 1

$$\begin{array}{l} \frac{dN_1^e}{d\xi} = -\frac{1}{2} + \xi \\ \frac{dN_2^e}{d\xi} = \frac{1}{2} + \xi \\ \frac{dN_2^e}{d\xi} = -2\xi \end{array}$$

PROBLEM 5.2



We will be using the hierarchial approach for this problem We first solve for N_5^e

Let,
$$N_5^e = c_5(\xi + 1)(\xi - 1)(\eta - 1)(\eta + 1)$$

putting $N_5^e = 1$ and $\xi = 1$ we have,
 $c_5 = 1$
so, $N_5^e = (\xi + 1)(\xi - 1)(\eta - 1)(\eta + 1)$

$$N_5 = (\zeta + 1)(\zeta - 1)(\eta - 1)(\eta + 1)$$

Let,
$$N_1^e = c_1(\xi - 1)(\eta - 1)$$

putting $N_1^e = 1$, $\xi = -1$ and $\eta = -1$ we have

$$c_1 = \frac{1}{4}$$

so, $N_1^e = \frac{1}{4}(\xi - 1)(\eta - 1)$

Now,
Let,
$$N_2^e = c_2(\xi + 1)(\eta - 1)$$

putting $N_2^e = 1$, $\xi = 1$ and $\eta = -1$ we have $\rightarrow c_2 = -\frac{1}{4}$
so, $N_2^e = -\frac{1}{4}(\xi + 1)(\eta - 1)$

Now,
Let,
$$N_3^e = c_3(\xi + 1)(\eta + 1)$$

putting $N_3^e = 1$, $\xi = 1$ and $\eta = 1$ we have $\rightarrow c_3 = \frac{1}{4}$
so, $N_3^e = \frac{1}{4}(\xi + 1)(\eta + 1)$

Now,
Let,
$$N_4^e = c_4(\xi - 1)(\eta + 1)$$

putting $N_4^e = 1$, $\xi = -1$ and $\eta = 1$ we have $\rightarrow c_4 = -\frac{1}{4}$
so, $N_4^e = -\frac{1}{4}(\xi - 1)(\eta + 1)$

Considering
$$N_1$$
 over node 5,
 $N_1^e = \frac{1}{4}(\xi - 1)(\eta - 1) + g_1(\eta^2 - 1)(\xi^2 - 1)$ at node 5, $\xi = 0$, $\eta = 0$, $N_1^e = 0$ we get
 $g_1 = -\frac{1}{4}$ so, $N_1^e = \frac{1}{4}(\xi - 1)(\eta - 1) - \frac{1}{4}(\eta^2 - 1)(\xi^2 - 1)$

Considering
$$N_2$$
 over node 5,
$$N_2^e = -\frac{1}{4}(\xi+1)(\eta-1) + g_2(\eta^2-1)(\xi^2-1)$$
 at node 5, $\xi=0, \, \eta=0, \, N_2^e=0$ we get
$$g_2 = -\frac{1}{4}$$
 so, $N_2^e = -\frac{1}{4}(\xi+1)(\eta-1) - \frac{1}{4}(\eta^2-1)(\xi^2-1)$

Considering
$$N_3$$
 over node 5,
$$N_3^e = \frac{1}{4}(\xi+1)(\eta+1) + g_3(\eta^2-1)(\xi^2-1)$$
 at node 5, $\xi=0$, $\eta=0$, $N_3^e=0$ we get
$$g_3 = -\frac{1}{4}$$
 so,
$$N_3^e = +\frac{1}{4}(\xi+1)(\eta+1) - \frac{1}{4}(\eta^2-1)(\xi^2-1)$$
 Considering N_4 over node 5,
$$N_4^e = -\frac{1}{4}(\xi-1)(\eta+1) + g_4(\eta^2-1)(\xi^2-1)$$
 at node 5, $\xi=0$, $\eta=0$,
$$N_4^e=0$$
 we get
$$g_4 = -\frac{1}{4}$$
 so,
$$N_4^e = +\frac{1}{4}(\xi-1)(\eta+1) - \frac{1}{4}(\eta^2-1)(\xi^2-1)$$

$$N_1^e + N_2^e + N_3^e + N_4^e + N_5^e = \frac{1}{4}(\xi-1)(\eta-1) - \frac{1}{4}(\eta^2-1)(\xi^2-1) - \frac{1}{4}(\xi+1)(\eta-1) - \frac{1}{4}(\eta^2-1)(\xi^2-1) + \frac{1}{4}(\xi+1)(\eta+1) - \frac{1}{4}(\eta^2-1)(\xi^2-1) + \frac{1}{4}(\xi-1)(\eta+1) - \frac{1}{4}(\eta^2-1)(\xi^2-1) + \frac{1}{4}(\xi-1)(\eta+1) - \frac{1}{4}(\eta^2-1)(\xi^2-1) + (\eta^2-1)(\xi^2-1) = 1$$

Problem 5.3

$$n_E n_G >= n_F - n_R$$

For Hexahedron,

 $n_E = 6$, order of the stress-stain matrix **E**

 n_G is the Number of Gauss Points

 $n_F = n \times 3$ Number of Degrees of Freedom where n is the number of nodes

 $n_R = 6$ Number of Independent Rigid Body Modes

n	n_F	$n_F - 6$	Recomended Rule
8	24	18	$2 \times 2 \times 2$
20	60	54	$3 \times 3 \times 3$
27	81	75	$3 \times 3 \times 3$
64	192	186	$4 \times 4 \times 4$