MAESTRÍA EN INGENIERÍA ESTRUCTURAL Y DE CONSTRUCCIÓN UNIVERSITAT POLITÉCNICA DE CATALUNYA

TRABAJO N ${ }^{\circ} 05$:
 Isoparametric Representation
 Convergence Rerquirements

Student:
Elvis Roberto Gomez Quispe

Computational Structural Mechanics and Dynamics

"Isoparametric representation"

Problem 5.1

Consider a three-node bar element referred to the natural coordinate ξ. The two end nodes and the mid node are identified as 1,2 and 3 respectively. The natural coordinates of nodes 1,2 and 3 are $\xi=-1, \xi=1$ and $\xi=0$, respectively. The variation of the shape functions $\mathrm{N}_{1}(\xi), \mathrm{N}_{2}(\xi)$ and $\mathrm{N}_{3}(\xi)$ is sketched in the figure below. These functions must be quadratic polynomials in ξ :

$$
N_{1}^{e}(\xi)=a_{0}+a_{1} \xi+a_{2} \xi^{2} \quad N_{2}^{e}(\xi)=b_{0}+b_{1} \xi+b_{2} \xi^{2} \quad N_{3}^{e}(\xi)=c_{0}+c_{1} \xi+c_{2} \xi^{2}
$$

Figure.- Isoparametric shape functions for 3-node bar element (sketch).
Node 3 has been drawn at the 1-2 midpoint but it may be moved away from it.
a) Determine the coefficients $\mathrm{a}_{0}, \ldots, \mathrm{c}_{2}$ using the node value conditions depicted in figure. For exemple $\mathrm{N}^{\mathrm{e}}=1$ for $\xi=1$ and 0 for the rest of natural coordinates. The rest of the nodes follow the same scheme.
b) Verify that their sum is identically one.
c) Calculate their derivatives respect to the natural coordinates.

Problem 5.2

A five node quadrilateral element has the nodal configuration shown if the figure with two perspective views of $\mathrm{N}_{1}^{\mathrm{e}}$ and $\mathrm{N}_{5}^{\mathrm{e}}$. Find five shape functions $\mathrm{N}_{\mathrm{i}}^{\mathrm{e}}, \mathrm{i}=1, \ldots, 5$ that satisfy compatibility and also verify that their sum is unity.

Hint: develop $\mathrm{N}_{5}(\xi, \eta)$ first for the 5-node quad using the line-product method. Then the corner shape functions $\underline{N}_{i}(\xi, \eta)$, $i=1,2,3,4$, for the 4-node quad (already given in the notes). Finally combine $N_{i}=\underline{N}_{i}+\alpha N_{5}$ determining α so that all N_{i} vanish node 5 . Check that $N_{1}+N_{2}+N_{3}+$ $\mathrm{N}_{4}+\mathrm{N}_{5}=1$ identically.
"Convergence rerquirements"

Problem 5.3

Which minimum integration rules of Gauss-product type gives a rank sufficient stiffness matrix for these elements:

1. the 8 -node hexahedron
2. the 20 -node hexahedron
3. the 27 -node hexahedron
4. the 64 -node hexahedron

Date of Assignment: $5 / 03$ / 2018
Date of Submission: 12 / 03 / 2018
The assignment must be submitted as a pdf file named As5-Surname.pdf to the CIMNE virtual center.

Problemaco 51
i) Calculo de los coeficientes $a_{0} \quad C_{2}$:
$*$ Para $N_{1}^{e}(\varepsilon)=u_{0}+a_{1} \varepsilon+c_{2} \varepsilon^{2}$

Para nalo 1: $N_{1}^{0}(\varepsilon)=1 \rightarrow 1=a_{0}+a_{1}(-1)+a_{2}(-1)^{2}=a_{0}-a_{1}+a_{2}$
Para modo $3=N_{3}^{2}(\varepsilon)=0 \rightarrow 0=a_{0}+a_{1}(0)+a_{2}(0)^{2}=a_{0}$
Para modo $2=N_{2}^{e}(\varepsilon)=0 \rightarrow 0: a_{0}+a_{1}(1)+a_{2}(1)^{2}=a_{0}+a_{1}+a_{2}$
Ast tendremos: $\left.\left.\begin{array}{rl}1 & =a_{0}-a_{1}+a_{2} \\ 0 & =a_{0}\end{array}\right\} \begin{array}{l}1+a_{1}=a_{2} \\ -a_{1}=a_{2}\end{array}\right\} \quad a_{0}=0, a_{1}=-0.5, a_{2}=0.5$
$*$ Para $N_{2}^{e}(\varepsilon)=b_{0}+b_{1} \varepsilon+b_{2} \xi^{2}$

Para nodo $1=N_{2}^{e}(\varepsilon)=0 \rightarrow 0=b_{0}+b_{1}(-1)+b_{2}(-1)^{2}=b_{0}-b_{1}+b_{2}$
Para modl $3=N_{2}^{e}(\varepsilon)=0 \rightarrow 0=b_{0}+b_{1}(0)+b_{2}(0)^{2}=b_{0}$
Para $\bmod 2=N_{2}^{e}(\varepsilon)=1 \rightarrow 1=b_{0}+b_{1}(1)+b_{2}(1)^{2}=b_{0}+b_{1}+b_{2}$
Asi tendremos: $0=b_{i}-b_{1}+b_{2} \quad b_{0}=0, b_{1}=0.5, b_{2}=0.5$

$$
\left.\begin{array}{l}
0=b_{0} \\
1=b_{0}+b_{1}+b_{2}
\end{array}\right\}
$$

* Para $N_{3}^{e}(\varepsilon)=c_{0}+c_{1} E+c_{2} \xi^{2}$

Para nolo $1=N_{3}^{e}(\varepsilon)=0 \quad 0=C_{0}+C_{1}(-1)+C_{2}(-1)^{2}=C_{0}-C_{1}+C_{2}$
Para nodo $3=N^{\xi} 3(\xi)=1 \quad 1=C_{0}+C_{1}(0)+C_{2}(0)^{2}=C_{0}$
Para mado $2=N_{3}^{2}(\xi)=0 \quad 0=C_{0}+C_{1}(1)+C_{2}(1)^{2}=C_{0}+C_{1}+C_{2}$
Asi tendremos: $\left.\begin{array}{c}0=C_{0}-C_{1}+C_{2} \\ A=C_{0}\end{array}\right\} C_{0}=1, C_{0}=0, C_{2}=-1$
ii) Verfliación:

Remplazando lor valores de los coeprientes en las fumaiares de farma:

$$
\begin{aligned}
& N_{1}^{e}=a_{0}+a_{1} \varepsilon+a_{2} \varepsilon^{2}=0+(-0.5)(\xi)+(0.5)(\xi)^{2}=-0.5 \xi+0.5 \varepsilon^{2} \\
& N_{2}^{e}=b_{0}+b_{1} \varepsilon+b_{2} \varepsilon^{2}=0+(0.5)(\varepsilon)+(0.5)(\xi)^{2}=0.5 \varepsilon+0.5 \varepsilon^{2} \\
& N_{3}^{e}=C_{0}+c_{1} \varepsilon+C_{2} \varepsilon^{2}=1+0(\xi)+(-1) \varepsilon^{2}=1-\xi^{2} \\
& N_{1}^{e}+N_{2}^{e}+N_{3}^{e}=\left(-0.5 \xi+0.5 \xi^{2}\right)+\left(0.5 \varepsilon+0.5 \varepsilon^{2}\right)+1-\varepsilon^{2} \\
& N_{1}^{e}+N_{2}^{e}+N_{3}^{e}=1
\end{aligned}
$$

iii) Derivadas de funcioves de forma renputo a aordenadas natorales:

$$
\begin{array}{ll}
N_{1}^{e}=-0.5 \varepsilon+0.5 \varepsilon^{2} & \frac{\partial N_{1}^{e}}{\partial \varepsilon}=-0.5+\varepsilon \\
N_{2}^{e}=0.5 \varepsilon+0.5 \varepsilon^{2} & \frac{\partial N_{2}^{e}}{\partial \varepsilon}=0.5+\varepsilon \\
N_{3}^{e}=1-\varepsilon^{2} & \frac{\partial N_{3}^{e}=-2 \varepsilon}{\partial \varepsilon}=
\end{array}
$$

Preblema 52

Funcion de formo det nodos:
Conforme el grafico u deberá as mplir que $N^{2}=0$ ipara los bordes iosea para $\Sigma^{\Sigma}=1 ; E=-1, n=1, n=-1$ porlo ave oorlemos dentear:

$$
\begin{aligned}
& N_{s}^{c}=c_{0}(\varepsilon+1)(\varepsilon-1)(n+1)(n-1) \\
& N_{5}^{e}=c_{0}\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)
\end{aligned}
$$

Luepo. ne uimpliri que pari $N_{5}^{e}=1 ; \xi=0$ yn=0 $\rightarrow 1=c,(0-1)(0-1) \rightarrow c_{0}=1$
Luogo: $\quad N_{s}^{e}=\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)$

* Funcion de Forma de los nodos 1,2,3,4:

Nor hancvemos en la ecuación: $N^{2}=N_{i}+\infty N_{s}^{e}$
dovde: $N_{i}=\frac{1}{4}\left(1+\varepsilon_{i}\right)\left(1+n n_{i}\right)$
Unero rara nodo 1: $M_{1}=\frac{1}{4}(1+\varepsilon(-1))(1+n(-1))$

$$
N_{i}=\frac{1}{4}(1-\varepsilon)(1-n)
$$

Para nudo 2: $\quad N_{2}=\frac{1}{4}(1+\varepsilon(i))(1+n(-1))$

$$
N_{2}=\frac{1}{4}(1+\dot{\varepsilon})(1-n)
$$

para nodo3: $\left.N_{3}=\frac{1}{4}(1+2)\right)(1+n(1))$

$$
N_{3}=\frac{1}{4}(1+\varepsilon)(1+n)
$$

Parar node 4: $\quad N_{4}=\frac{1}{4}(1+\varepsilon(-1))(1+n(1))$

$$
N_{y}=\frac{1}{4}(1-\varepsilon)(1+n)
$$

Ahora reemplizamos en la equacion inicial:

$$
N_{1}^{e}=N_{1}+\alpha N_{5}^{e}=\frac{1}{4}(1-\varepsilon)(1-n)+\infty\left(\varepsilon^{2}-i\right)\left(n^{2}-1\right)
$$

Se umnolirá aue: Dara $N_{1}^{e}=0 ; \varepsilon=0$ g $n=0$
Remolasonto:

$$
0=\frac{1}{4}(1-0)(1-0)+\alpha(0-1)(0-1) \rightarrow \alpha=-\frac{1}{4}
$$

Luogo obrervamor gue $a=-\frac{1}{4}$ de cumplirá para $N_{2}^{e}, N_{3}^{e}, N_{4}^{e}$.
husgo conoceremos las turciones de formas
$N_{1}^{e}=\frac{1}{4}(1-\varepsilon)(1-n)-\frac{1}{4}\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)$
$N_{2}^{2}=\frac{1}{4}(1+\varepsilon)(1-n)-\frac{1}{4}\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)$
$N_{3}^{e}=\frac{1}{4}(1+\varepsilon)(1+n)-\frac{1}{4}\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)$
$N_{4}^{2}=\frac{1}{4}(1-\varepsilon)(1+n)-\frac{1}{4}\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)$
$N_{r}^{e}=\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)$
Comprobución:
$N_{1}^{e}+N_{2}^{e}+N_{3}^{e}+N_{4}^{e}+N_{5}^{e}$
$\frac{1}{4}(1-\varepsilon)[(1-n)+(1+n)]+1(1+\varepsilon)[(1-n)+(1+n)]-(1)\left(\frac{1}{4}\right)\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)+\left(\varepsilon^{2}-1\right)\left(n^{2}-1\right)$
$\frac{1}{2}(1-\varepsilon)+1(1+\varepsilon)=1$
$\frac{1}{2}(1-\varepsilon)+\frac{1}{2}(1+\varepsilon)=\frac{1}{2}-\frac{\varepsilon}{2}+\frac{1}{2}+\varepsilon=1$

