Computational Structural Mechanics and Dynamics

Assignment 4
Zahra Rajestari

Assignment 4.1

1. Compute the entries of K¢ for the following axisymmetric triangle:
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The material is isotropic with v = 0 for which the stress-strain matrix is,
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Solution
The shape functions for a triangular element in natural coordinates are written as:
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The B matrix is found based on the following:

B = DN

where N is the matrix of shape functions and
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Therefore,
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According to the definition of B, we have to differentiate the shape functions and r should be
interpolated from the nodal coordinates. Therefore we have:
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And in terms of &1, & and &3 we have:
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According to the formula for calculating the stiffness matrix, for a quadrilateral element with
p integration points we have:

K = Z Z 2nwren BT (Eem) EB(Eem)r(Em)J (Exm)

where J is the determinant of the jaccobian found as:
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Using Gauss centroid rule to compute the integration, we have to substitute & = & = &3 = %
and wy = w; = 0.5 into the element stiffness matrix. Therefore we will obtain K as the following:
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2. Show that the sum of the rows (and columns) 2, 4 and 6 of K(®) must vanish and explain why.
Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.
Solution
As it can be seen in K matrix obtained in the previous question, the sum of the elements of
rows (columns) 2 and 4 and 6 which are related to degree of freedom in z-direction is zero.
This is because in this direction we have rigid body motion. However, the sum of the elements
related to r-direction is not zero since it is not experiencing rigid-body motion and is restricted
in this direction.



3. Compute the consistent force vector f(¢) for gravity forces b = [0, —g]”.
Solution
to compute the force vector, we have:
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where J is the determinant of the jaccobian (which has been computed previously) and N is
found as below:
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Using Gauss centroid rule, we have:
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