Computational Structural Mechanics and Dynamics

Assignment 4
Zahra Rajestari

Assignment 4.1

1. Compute the entries of K^{e} for the following axisymmetric triangle:

$$
r_{1}=0 \quad r_{2}=r_{3}=a \quad z_{1}=z_{2}=0 \quad z_{3}=b
$$

The material is isotropic with $\nu=0$ for which the stress-strain matrix is,

$$
\mathbf{E}=E\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 / 2
\end{array}\right]
$$

Solution

The shape functions for a triangular element in natural coordinates are written as:

$$
\begin{gathered}
N_{1}=1-\xi-\eta=\xi_{1}, \\
N_{2}=\xi=\xi_{2}, \\
N_{3}=\eta=\xi_{3} .
\end{gathered}
$$

The B matrix is found based on the following:

$$
B=D N
$$

where N is the matrix of shape functions and

$$
D=\left[\begin{array}{cc}
\frac{\partial}{\partial r} & 0 \\
0 & \frac{\partial}{\partial z} \\
\frac{1}{r} & 0 \\
\frac{\partial}{\partial z} & \frac{\partial}{\partial r}
\end{array}\right]
$$

Therefore,

$$
\boldsymbol{B}=\left[\begin{array}{cccccc}
\frac{\partial N_{1}}{\partial r} & \frac{\partial N_{2}}{\partial r} & \frac{\partial N_{3}}{\partial r} & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{\partial N_{1}}{\partial z} & \frac{\partial N_{2}}{\partial z} & \frac{\partial N_{3}}{\partial z} \\
\frac{N_{1}}{r} & \frac{N_{2}}{r} & \frac{N_{3}}{r} & 0 & 0 & 0 \\
\frac{\partial N_{1}}{\partial z} & \frac{\partial N_{2}}{\partial z} & \frac{\partial N_{3}}{\partial z} & \frac{\partial N_{1}}{\partial r} & \frac{\partial N_{2}}{\partial r} & \frac{\partial N_{3}}{\partial r}
\end{array}\right]
$$

According to the definition of B , we have to differentiate the shape functions and r should be interpolated from the nodal coordinates. Therefore we have:

$$
\begin{gathered}
r=\sum r_{i} N_{i}=a(\xi+\eta)=a\left(\xi_{2}+\xi_{3}\right) \\
{\left[\begin{array}{c}
\frac{\partial N_{1}}{\partial r} \\
\frac{\partial N_{1}}{\partial z}
\end{array}\right]=J^{-1}\left[\begin{array}{c}
\frac{\partial N_{1}}{\partial \xi} \\
\frac{\partial N_{1}}{\partial \eta}
\end{array}\right]=\left[\begin{array}{c}
-\frac{1}{a} \\
0
\end{array}\right]} \\
{\left[\begin{array}{c}
\frac{\partial N_{2}}{\partial r} \\
\frac{\partial N_{2}}{\partial z}
\end{array}\right]=J^{-1}\left[\begin{array}{c}
\frac{\partial N_{2}}{\partial \xi} \\
\frac{\partial N_{2}}{\partial \eta}
\end{array}\right]=\left[\begin{array}{c}
\frac{1}{a} \\
-\frac{1}{b}
\end{array}\right]} \\
{\left[\begin{array}{l}
\frac{\partial N_{3}}{\partial r} \\
\frac{\partial N_{3}}{\partial z}
\end{array}\right]=J^{-1}\left[\begin{array}{c}
\frac{\partial N_{3}}{\partial \xi} \\
\frac{\partial N_{3}}{\partial \eta}
\end{array}\right]=\left[\begin{array}{l}
0 \\
\frac{1}{b}
\end{array}\right]}
\end{gathered}
$$

Therefore,

$$
\boldsymbol{B}=\left[\begin{array}{cccccc}
\frac{-1}{a} & \frac{1}{a} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{-1}{b} & \frac{1}{b} \\
\frac{1-\xi-\eta}{a(\xi+\eta)} & \frac{\xi}{a(\xi+\eta)} & \frac{\eta}{a(\xi+\eta)} & 0 & 0 & 0 \\
0 & \frac{-1}{b} & \frac{1}{b} & \frac{-1}{a} & \frac{1}{a} & 0
\end{array}\right]
$$

And in terms of ξ_{1}, ξ_{2} and ξ_{3} we have:

$$
\boldsymbol{B}=\left[\begin{array}{cccccc}
\frac{-1}{a} & \frac{1}{a} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{-1}{b} & \frac{1}{b} \\
\frac{\xi_{1}}{a\left(\xi_{2}+\xi_{3}\right)} & \frac{\xi_{2}}{a\left(\xi_{2}+\xi_{3}\right)} & \frac{\xi_{3}}{a\left(\xi_{2}+\xi_{3}\right)} & 0 & 0 & 0 \\
0 & \frac{-1}{b} & \frac{1}{b} & \frac{-1}{a} & \frac{1}{a} & 0
\end{array}\right]
$$

According to the formula for calculating the stiffness matrix, for a quadrilateral element with p integration points we have:

$$
K^{(e)}=\sum \sum 2 \pi \omega_{k} \omega_{l} B^{T}\left(\xi_{k} \eta_{l}\right) E B\left(\xi_{k} \eta_{l}\right) r\left(\xi_{k} \eta_{l}\right) J\left(\xi_{k} \eta_{l}\right)
$$

where J is the determinant of the jaccobian found as:

$$
J=\sum\left[\begin{array}{cc}
\frac{\partial N_{i}}{\partial \xi} r_{i} & \frac{\partial N_{i}}{\partial \xi} z_{i} \\
\frac{\partial N_{i}}{\partial \eta} r_{i} & \frac{\partial N_{i}}{\partial \eta} z_{i}
\end{array}\right]=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
a & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{cc}
0 & 0 \\
a & b
\end{array}\right]=\left[\begin{array}{ll}
a & 0 \\
a & b
\end{array}\right] \Longrightarrow \operatorname{det}(J)=a b
$$

Using Gauss centroid rule to compute the integration, we have to substitute $\xi_{1}=\xi_{2}=\xi_{3}=\frac{1}{3}$ and $\omega_{k}=\omega_{l}=0.5$ into the element stiffness matrix. Therefore we will obtain K as the following:

$$
\boldsymbol{K}=\frac{2 \pi a b E}{2}\left[\begin{array}{cccccc}
\frac{5}{6 a} & -\frac{1}{2 a} & \frac{1}{6 a} & 0 & 0 & 0 \\
-\frac{1}{2 a} & \frac{2 a}{3}\left(\left(\frac{5}{4 a^{2}}\right)+\frac{1}{2 b^{2}}\right) & \frac{2 a}{3}\left(\left(\frac{1}{4 a^{2}}\right)-\frac{1}{2 b^{2}}\right) & \frac{1}{3 b} & -\frac{1}{3 b} & 0 \\
\frac{1}{6 a} & \frac{2 a}{3}\left(\left(\frac{1}{4 a^{2}}\right)-\frac{1}{2 b^{2}}\right) & \frac{2 a}{3}\left(\left(\frac{1}{4 a^{2}}\right)+\frac{1}{2 b^{2}}\right) & -\frac{1}{3 b} & \frac{1}{3 b} & 0 \\
0 & \frac{1}{3 b} & -\frac{1}{3 b} & \frac{1}{3 a} & -\frac{1}{3 a} & 0 \\
0 & -\frac{1}{3 b} & \frac{1}{3 b} & -\frac{1}{3 a} & \frac{2 a}{3}\left(\left(\frac{1}{2 a^{2}}\right)+\frac{1}{b^{2}}\right) & -\frac{2 a}{3 b^{2}} \\
0 & 0 & 0 & 0 & -\frac{2 a}{3 b^{2}} & \frac{2 a}{3 b^{2}}
\end{array}\right]
$$

2. Show that the sum of the rows (and columns) 2, 4 and 6 of $K^{(e)}$ must vanish and explain why. Show as well that the sum of rows (and columns) 1,3 and 5 does not vanish, and explain why.

Solution

As it can be seen in K matrix obtained in the previous question, the sum of the elements of rows (columns) 2 and 4 and 6 which are related to degree of freedom in z-direction is zero. This is because in this direction we have rigid body motion. However, the sum of the elements related to r-direction is not zero since it is not experiencing rigid-body motion and is restricted in this direction.
3. Compute the consistent force vector $f^{(e)}$ for gravity forces $b=[0,-g]^{T}$.

Solution

to compute the force vector, we have:

$$
f_{e x t}^{(e)}=\sum \sum 2 \pi \omega_{k} \omega_{l} N^{T}\left(\xi_{k} \eta_{l}\right) b\left(\xi_{k} \eta_{l}\right) r\left(\xi_{k} \eta_{l}\right) J\left(\xi_{k} \eta_{l}\right)
$$

where J is the determinant of the jaccobian (which has been computed previously) and N is found as below:

$$
N=\left[\begin{array}{cccccc}
N_{1}^{(e)} & N_{2}^{(e)} & N_{3}^{(e)} & 0 & 0 & 0 \\
0 & 0 & 0 & N_{1}^{(e)} & N_{2}^{(e)} & N_{3}^{(e)}
\end{array}\right] \Longrightarrow N=\left[\begin{array}{cccccc}
\xi_{1} & \xi_{2} & \xi_{3} & 0 & 0 & 0 \\
0 & 0 & 0 & \xi_{1} & \xi_{2} & \xi_{3}
\end{array}\right]
$$

Using Gauss centroid rule, we have:

$$
f=\frac{2 \pi a b E}{2}\left[\begin{array}{c}
0 \\
0 \\
0 \\
-\frac{2 a g}{9} \\
-\frac{2 a g}{9} \\
-\frac{2 a g}{9}
\end{array}\right]
$$

