

MAESTRÍA EN INGENIERÍA ESTRUCTURAL Y DE CONSTRUCCIÓN UNIVERSITAT POLITÉCNICA DE CATALUNYA

TRABAJO N°04: Structures of Revolution

Student:

Elvis Roberto Gomez Quispe

"Structures of revolution"

Assignment 4.1

1. Compute the entries of \mathbf{K}^{e} for the following axisymmetric triangle:

$$r_1=0, \quad r_2=r_3=a, \quad z_1=z_2=0, \quad z_3=b$$

The material is isotropic with v = 0 for which the stress-strain matrix is,

$$\boldsymbol{E} = E \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2} \end{bmatrix}$$

- 2. Show that the sum of the rows (and columns) 2, 4 and 6 of \mathbf{K}^{e} must vanish and explain why. Show as well that the sum of rows (and columns) 1, 3 and 5 does not vanish, and explain why.
- **3.** Compute the consistent force vector \mathbf{f}^{e} for gravity forces $\mathbf{b} = [0, -g]^{T}$.

 Date of Assignment:
 26 / 02 / 2018

 Date of Submission:
 5 / 03 / 2018

The assignment must be submitted as a pdf file named **As4-Surname.pdf** to the CIMNE virtual center.

Assignment 4.1

Pregunta 1.

* Tendremos el siguiente plano:

* Considerando la evergía potencial TT sobre una región discretizada esta dada por $TT = \sum_{e} \left[\frac{1}{2} \left(2\pi \sum_{e} E^{T} D \cdot E \cdot r dA \right) - 2\pi \sum_{e} u^{T} f r dA - 2\pi \sum_{e} u^{T} Tr de \right] - \sum_{e} u^{T} P_{e}$

donde la evergía de debarración unitaria De del elemento; dada non el 1° termi no pue de escribirse como: $De = \pm qT(2\pi SBDBrdA)q$ Donde; la contidad dentro del parentosis corresponde ala matriz del elemento: $K^e = 2\pi SEFB dA$

$$k = 2\pi \int B^{T} E B_{r} dA$$

Donde :

Relacion es fuerso - desplazamiento:

Matris de Elastraidad:

0 0

	1					1						
	-											
	700	0	7.	0 7	Ziz	0			4	1)	0	
	223		-31		+1-1				<u> </u>		U	
	tot(T)		det (J)	(el (J)			- ()		$(-\nu)$		1-0
	04.00	20	•	re	0	r.	D =	E(1-v)	V	1	0))
B=		1 32	υ	•13	0	14					Ŭ	
		· tra		1 t(T)		Lot(J)	(/	(1+1)(1-20)	1-0			1-0
		della		ag (C5)		U.L.			0	0 1	-) V	0
	×.	-	~	7	Ya	7.		21	0	0 1		U
	132	£23	113	Z13	. 21	FIL			2	2	(1-v)	
		1+(-)	1+(-1)	1+(-)	17(7)	dot(7)						A
	(etG)	delles	delles	Oe(CJ)	an as	un si			V	V	0	1
					Ma	D	1.17		4	1-12		
	N,	0	N2	0	10 3	v	E.		1-0	1 0		
			1×		r				10 C			
	r											

Dondepara nuertro caso: $D = E = E \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$ * Como una aproximación "Byr" se evaluarán en el centroide del Trángulo, para patrior mente usarse como valores representativos para el Triángulo; por lo que tendremos:

De la vista en los triangulos de deformación constante: para el caso del plano r,Z:

Y = N,Y, + NZYZ + N3Y3 Z = NIZI + NZZZ + N3Z3 Expresando las junciones de forma en terminos de voordenados naturales:

$$Y = \xi_{71} + \eta_{72} + (1 - \xi - \eta) \cdot r_3$$

 $Z = \xi_{71} + \eta_{72} + (1 - \xi - \eta) \cdot z_3$

Ahora evaluarmus las Junciones de lorma respecto al centroide: $\frac{2}{3}a = \xi(0) + n(a) + (1 - \xi - n)(a) = a(n) + a - \xi a - na$ $\frac{b}{3} = \xi(0) + n(0) + (1 - \xi - n)(b) = b - \xi b - nb$

Desurrollando: $\xi = \frac{1}{3}$; $n = \frac{1}{3}$ Por lo tanto: $N_1 = \xi = \frac{1}{3}$; $N_2 = n = \frac{1}{3}$; $N_3 = 1 - \xi - n = \frac{1}{3}$ Luego $r = N_1 r_1 + N_2 r_2 + N_3 r_3 = \frac{1}{3}(0) + \frac{1}{3}(0) + \frac{1}{3}(0) = \frac{2}{3}a$; $r = \frac{2}{3}a$

Considerando: los valures obtenidor; podremos conformar la matris "B":

$$\beta = \begin{bmatrix} \frac{(0-b)}{a,b} & 0 & \frac{(b-0)}{a,b} & 0 & \frac{(0-0)}{a,b} & 0 \\ \hline a,b & a,b & 0 & \frac{(0-0)}{a,b} & 0 & \frac{(a-0)}{a,b} \\ \hline a & -\frac{1}{a} & 0 & \frac{1}{a} & 0 & 0 \\ \hline a & 0 & 0 & -\frac{1}{b} & 0 & \frac{1}{b} \\ \hline 0 & 0 & 0 & -\frac{1}{b} & 0 & \frac{1}{b} \\ \hline \frac{(a-a)}{a,b} & \frac{(0-b)}{a,b} & \frac{(b-0)}{a,b} & \frac{(a-0)}{a,b} & \frac{(0-0)}{a,b} \\ \hline \frac{1}{2a} & 0 & \frac{1}{2a} & 0 & \frac{1}{2a} & 0 \\ \hline \frac{1}{2a} & 0 & \frac{1}{2a} & 0 & \frac{1}{2a} & 0 \\ \hline \frac{1}{2a} & 0 & \frac{1}{2a} & 0 & \frac{1}{2a} & 0 \\ \hline \frac{1}{2a} & 0 & \frac{1}{2a} & 0 & \frac{1}{2a} & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0 & 0 & 0 \\ \hline 0 & 0 & 0$$

Scanned by CamScanner

De la anterior, podremos hollor la matris de Rigidez:

$$K_{e} = 2\pi \left(\frac{2a}{3}\right) \left(\frac{ab}{2}\right) = \frac{1}{a} = \frac{1}{2a} = \frac{1}$$

$$Ke = 2\pi \cdot \frac{a^{2}b}{3}$$

$$\begin{cases}
-\frac{1}{a} & 0 & 0 & \frac{1}{4a} \\
0 & 0 & -\frac{1}{a} & 0 \\
\frac{1}{a} & 0 & -\frac{1}{b} & \frac{1}{4a} \\
0 & -\frac{1}{b} & \frac{1}{4a} & 0 \\
\frac{1}{a} & 0 & -\frac{1}{b} & \frac{1}{4a} \\
\frac{1}{a} & 0 & -\frac{1}{b} & \frac{1}{4a} \\
\frac{1}{a} & 0 & -\frac{1}{b} & \frac{1}{4a} \\
\frac{1}{a} & 0 & \frac{1}{b} & \frac{1}{2a} \\
\frac{1}{a} & 0 & \frac{1}{2a} & 0 \\
\frac{1}{2a} & 0 & \frac$$

Scanned by CamScanner

Pregunta 2.

- * Samamos las filas y Columnas 2,476 de la Matris de Rigides Ké: Al ser la matris unietrica Tendremos:
 - En $F_{2} \rightarrow C_{2} \rightarrow 0 + \frac{1}{a^{2}} + \frac{1}{a^{2}} \frac{1}{a^{2}} \frac{1}{a^{2}} = 0$ En $F_{4} \rightarrow C_{4} \rightarrow 0 - \frac{1}{a^{2}} - \frac{1}{a^{2}} + (\frac{1}{b^{2}} + \frac{1}{a^{2}}) + \frac{1}{a^{2}} - \frac{1}{b^{2}} = 0$ En $F_{6} \rightarrow C_{6} \rightarrow -\frac{1}{b^{2}} - \frac{1}{b^{2}} = 0$

- * Asi también sumamos las filas y Columnas 1,3,5 de la matriz de Rigidez "Ké", Al ser la matriz simétrica tendremos: En Fiy Ci $\rightarrow \frac{9}{8a^2} - \frac{7}{8a^2} + \frac{1}{8a^2} = \frac{3}{8a^2}$
 - En F34 C3 $\rightarrow -\frac{7}{8a^2} + \frac{1}{a \cdot b} + \frac{9}{8a^2} + \frac{1}{b^2} \frac{1}{a \cdot b} \frac{1}{b^2} + \frac{1}{6a^2} = \frac{3}{8a^2}$ En F54 Cs $\rightarrow \frac{1}{6a^2} - \frac{1}{a \cdot b} - \frac{1}{b^2} + \frac{1}{6a^2} + \frac{1}{a \cdot b} + \frac{1}{b^2} + \frac{1}{8a^2} = \frac{3}{8a^2}$

Pregunta 3.

El vator de Amisas externas "fe" se define como:

$$f^{(e)} = f^{(e)}_{b} + f^{(e)}_{q} + S^{(e)}_{p}$$

i) Votor de luersas concentradas equivalente alas fursas másicas:

$$f_b^{(e)} = 2\pi SSN^{T}b.r dr dz$$

ii) Votor de buersas conontrodas equivalente a las superficiales:

$$f_q = 2\pi \sum_{m=1}^{n} \oint r N_m^T q^{(m)} ds$$

iii) Voctor de buersas concentradas equivalente a las fuersas distribuidas circularmente:

$$f_{P}^{(e)} = 2\pi r P^{(e)}$$

* Considerando para nuestro caso: b= E0,-57' La cual actuará en el contro de masa del elemento; para la cual re · consideraran valores hallados anterior mente (Juncioner de forma):

N₁ = N₂ = N₃ = $\frac{1}{3}$; $r = \frac{2}{3}^{\alpha}$ \Rightarrow Como solo se considerará la acción de la gravedad; Teuchremos que el valor de la fuersa externa será:

$$f^{(0)} = f^{e}_{b} = 2\pi \int N^{T} b \cdot r \cdot dr dz$$

$$A^{V_{1}} o = \int A^{V_{1}} \int A^{V_{1}} b \cdot r \cdot dr dz$$

$$f^{(1)} = \int A^{V_{1}} \int A^{V_{1}}$$

$$f^{e} = 4 \pi \alpha \left[\begin{array}{c} 0 \\ -9 \\ 3 \\ 0 \\ -9 \\ 3 \\ A \end{array} \right] \frac{1}{9} \frac{1}{$$

Scanned by CamScanner