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Assigcnment 4.1:

1. The stiffness matrix of an axisymmetric triangle will be:
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But, if it is used natural coordinate, then, the stiffness matrix will take the next expression:
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Before continuing, it will be necessary to interpolate the radius as r:ZriNi , and the matrix B

will be split in two matrices, called, D and H, such that B = D*H. It will use natural coordinate.
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The matrix D contains the component of the inverse of the Jacobian matrix.
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And the matrix B will be:
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Finally, and using Gauss quadrature as integration method, the stiffness matrix is:
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Remark 1: It has considered the unknown vector U is formed as:
Url

2

-

r3

z1

z2

Cc C C C

23 |

2. It can be seen the summation of the third last column are equal to zero. As explanation of
this problem, let it considered the next displacement vector:
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Graphically, this vector represents the next situation:

When it is computed the internal forces in order to obtain the reaction forces, then, it get.

, there is no doformation.
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KU= 0 and the deformation vector e=BU=
0

It seems, that the system is subject to a rigid body motion in the z direction but is not true.
Now, it is considered the next displacement vector U.
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When it is computed the internal forces in order to obtain the reaction forces, then it get.
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As a conclusion, it can be said that this type of element has a lack of stiffness in z direction, in

order to avoid that, it will be necessary not only constrain the r direction, but also constrain a z
direction of one of the nodes.

3. The element has been submitted to body force, more precisely the gravity force b= [0 —g]
then, the consistent force vector will be:
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