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Assignment 4.1: 

1. The stiffness matrix of an axisymmetric triangle will be: 

T
e

A

K 2 rB CBdA   

 

But, if it is used natural coordinate, then, the stiffness matrix will take the next expression: 
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Where: 
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1 2 3N ,  N 1 ,  and N        

Before continuing, it will be necessary to interpolate the radius as i i
i

r rN , and the matrix B 

will be split in two matrices, called, D and H, such that B = D*H. It will use natural coordinate. 
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The matrix D contains the component of the inverse of the Jacobian matrix. 
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Results: 
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And the matrix B will be: 
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Finally, and using Gauss quadrature as integration method, the stiffness matrix is: 
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Remark 1: It has considered the unknown vector U is formed as: 
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2. It can be seen the summation of the third last column are equal to zero. As explanation of 
this problem, let it considered the next displacement vector: 
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Graphically, this vector represents the next situation: 
 

 

 
When it is computed the internal forces in order to obtain the reaction forces, then, it get. 
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 and the deformation vector 
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, there is no doformation. 

It seems, that the system is subject to a rigid body motion in the z direction but is not true.  
Now, it is considered the next displacement vector U. 
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When it is computed the internal forces in order to obtain the reaction forces, then it get. 
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As a conclusion, it can be said that this type of element has a lack of stiffness in z direction, in 
order to avoid that, it will be necessary not only constrain the r direction, but also constrain a z 
direction of one of the nodes.  
 

3. The element has been submitted to body force, more precisely the gravity force  b 0 g 

then, the consistent force vector will be: 
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