Computational Structural Mechanics and Dynamics

Assignment 4

Structures of Revolution

By
Domingo Eugenio Cattoni Correa
Master in numerical method in engineering

Assignment 4.1:

1. The stiffness matrix of an axisymmetric triangle will be:

But, if it is used natural coordinate, then, the stiffness matrix will take the next expression:

$$
\mathrm{K}_{\mathrm{e}}=2 \pi \int_{0}^{1} \int_{0}^{1-\eta} r \mathrm{~B}^{\top} \mathrm{CB}|\mathrm{~J}| \mathrm{d} \zeta \mathrm{~d} \eta
$$

Where:
$C=E\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & \frac{1}{2}\end{array}\right] \mathrm{D}^{\prime}=\left[\begin{array}{cc}\frac{\partial}{\partial r} & 0 \\ 0 & \frac{\partial}{\partial z} \\ 1 & 0 \\ \frac{\partial}{\partial z} & \frac{\partial}{\partial r}\end{array}\right] \quad N=\left[\begin{array}{cccccc}N_{1} & N_{2} & N_{3} & 0 & 0 & 0 \\ 0 & 0 & 0 & N_{1} & N_{2} & N_{3}\end{array}\right]$
$B=D^{\prime *} N$
$N_{1}=\zeta, N_{2}=1-\zeta-\eta$, and $N_{3}=\eta$
Before continuing, it will be necessary to interpolate the radius as $r=\sum_{i} r_{i} N_{i}$, and the matrix B will be split in two matrices, called, D and H, such that $B=D^{*} H$. It will use natural coordinate.
$\mathrm{D}=\left[\begin{array}{ccccc}\frac{\partial \zeta}{\partial r} & \frac{\partial \eta}{\partial r} & 0 & 0 & 0 \\ 0 & 0 & \frac{\partial \zeta}{\partial z} & \frac{\partial \eta}{\partial z} & 0 \\ 0 & 0 & 0 & 0 & 1 \\ \frac{\partial \zeta}{\partial z} & \frac{\partial \eta}{\partial z} & \frac{\partial \zeta}{\partial r} & \frac{\partial \eta}{\partial r} & 0\end{array}\right] \mathrm{H}=\left[\begin{array}{cccccc}\frac{\partial N_{1}}{\partial \zeta} & \frac{\partial N_{2}}{\partial \zeta} & \frac{\partial N_{3}}{\partial \zeta} & 0 & 0 & 0 \\ \frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \frac{\partial N_{3}}{\partial \eta} & 0 & 0 & 0 \\ 0 & 0 & 0 & \frac{\partial N_{1}}{\partial \zeta} & \frac{\partial N_{2}}{\partial \zeta} & \frac{\partial N_{3}}{\partial \zeta} \\ 0 & 0 & 0 & \frac{\partial N_{1}}{\partial \eta} & \frac{\partial N_{2}}{\partial \eta} & \frac{\partial N_{3}}{\partial \eta} \\ \frac{N_{1}}{r} & \frac{N_{2}}{r} & \frac{N_{3}}{r} & 0 & 0 & 0\end{array}\right]$
The matrix D contains the component of the inverse of the Jacobian matrix.

$$
\mathrm{J}=\left[\begin{array}{ll}
\frac{\partial r}{\partial \zeta} & \frac{\partial z}{\partial \zeta} \\
\frac{\partial r}{\partial \eta} & \frac{\partial z}{\partial \eta}
\end{array}\right] J^{-1}=\left[\begin{array}{ll}
\frac{\partial \zeta}{\partial r} & \frac{\partial \eta}{\partial r} \\
\frac{\partial \zeta}{\partial z} & \frac{\partial \eta}{\partial z}
\end{array}\right]
$$

Results:

$$
\begin{aligned}
& J=\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right] J^{-1}=\left[\begin{array}{cc}
\frac{1}{a} & 0 \\
0 & \frac{1}{b}
\end{array}\right] \\
& D=\left[\begin{array}{ccccc}
\frac{1}{a} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{b} & 0 \\
0 & 0 & 0 & 0 & 1 \\
0 & \frac{1}{b} & \frac{1}{a} & 0 & 0
\end{array}\right] H=\left[\begin{array}{cccccc}
1 & -1 & 0 & 0 & 0 & 0 \\
0 & -1 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & -1 & 1 \\
\frac{\zeta}{a(\zeta-1)} & -\frac{\zeta+\eta-1}{a(\zeta-1)} & \frac{\eta}{a(\zeta-1)} & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

And the matrix B will be:

$$
B=\left[\begin{array}{cccccc}
\frac{1}{a} & -\frac{1}{a} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & -\frac{1}{b} & \frac{1}{b} \\
\frac{\zeta}{a(\zeta-1)} & -\frac{\zeta+\eta-1}{a(\zeta-1)} & \frac{\eta}{a(\zeta-1)} & 0 & 0 & 0 \\
0 & -\frac{1}{b} & \frac{1}{b} & \frac{1}{a} & -\frac{1}{a} & 0
\end{array}\right]
$$

Finally, and using Gauss quadrature as integration method, the stiffness matrix is:
$\mathrm{K}_{\mathrm{e}}=\int_{0}^{1} \int_{0}^{1-\eta} \mathrm{r} \mathrm{B}^{\top} \mathrm{CB} \mid J \mathrm{~d} \zeta \mathrm{~d} \eta=\int_{0}^{1} \int_{0}^{1-\eta} \mathrm{F}(\zeta, \eta) \mathrm{d} \zeta \mathrm{d} \eta \approx \mathrm{F}(\zeta=1 / 3, \eta=1 / 3)$
$K_{e}=E\left[\begin{array}{cccccc}-\frac{5 b}{6} & \frac{b}{2} & -\frac{b}{6} & 0 & 0 & 0 \\ \frac{b}{2} & -\frac{2}{3}\left(\frac{5 b}{4}+\frac{a^{2}}{2 b}\right) & -\frac{2}{3}\left(\frac{b}{4}-\frac{a^{2}}{2 b}\right) & \frac{a}{3} & -\frac{a}{3} & 0 \\ -\frac{b}{6} & -\frac{2}{3}\left(\frac{b}{4}-\frac{a^{2}}{2 b}\right) & -\frac{2}{3}\left(\frac{b}{4}+\frac{a^{2}}{2 b}\right) & -\frac{a}{3} & \frac{a}{3} & 0 \\ 0 & \frac{a}{3} & -\frac{a}{3} & -\frac{b}{3} & \frac{b}{3} & 0 \\ 0 & -\frac{a}{3} & \frac{a}{3} & \frac{b}{3} & -\frac{2}{3}\left(\frac{b}{2}+\frac{a^{2}}{2 b}\right) & \frac{2 a^{2}}{3 b} \\ 0 & 0 & 0 & 0 & \frac{2 a^{2}}{3 b} & -\frac{2 a^{2}}{3 b}\end{array}\right]$

Remark 1: It has considered the unknown vector U is formed as:
$U=\left[\begin{array}{l}U_{r 1} \\ U_{r 2} \\ U_{r 3} \\ U_{21} \\ U_{22} \\ U_{23}\end{array}\right]$
2. It can be seen the summation of the third last column are equal to zero. As explanation of this problem, let it considered the next displacement vector:
$U=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 1 \\ 1\end{array}\right]$

Graphically, this vector represents the next situation:

When it is computed the internal forces in order to obtain the reaction forces, then, it get.
$\mathrm{KU}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$ and the deformation vector $\varepsilon=\mathrm{BU}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0\end{array}\right]$, there is no doformation.
It seems, that the system is subject to a rigid body motion in the z direction but is not true. Now, it is considered the next displacement vector U.

When it is computed the internal forces in order to obtain the reaction forces, then it get.
$K U=\left[\begin{array}{c}-\frac{b}{2} \\ -\frac{b}{2} \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right]$
As a conclusion, it can be said that this type of element has a lack of stiffness in z direction, in order to avoid that, it will be necessary not only constrain the r direction, but also constrain a z direction of one of the nodes.
3. The element has been submitted to body force, more precisely the gravity force $b=\left[\begin{array}{ll}0 & -g\end{array}\right]$ then, the consistent force vector will be:

$$
\begin{array}{r}
f^{e}=\int_{0}^{1} \int_{0}^{1-\eta} r N b^{\top}|J| d \zeta d \eta=\left[\begin{array}{c}
0 \\
0 \\
0 \\
-\frac{a^{2} b g}{12} \\
-\frac{a^{2} b g}{8} \\
-\frac{a^{2} b g}{8}
\end{array}\right] f^{e}=\left[\begin{array}{c}
f_{r}^{e} \\
f_{z}^{e}
\end{array}\right] \\
f_{r}^{e}=\left[\begin{array}{l}
0 \\
0 \\
0
\end{array}\right], f_{z}^{e}=\left[\begin{array}{l}
-\frac{a^{2} b g}{12} \\
-\frac{a^{2} b g}{8} \\
-\frac{a^{2} b g}{8}
\end{array}\right]
\end{array}
$$

