MAESTRÍA EN INGENIERÍA ESTRUCTURAL Y DE CONSTRUCCIÓN UNIVERSITAT POLITÉCNICA DE CATALUNYA

TRABAJO ${ }^{\circ}{ }^{\circ} 03$:
 The Plane Stress Problem
 The 3-Node Plane Stress Triangle

Student:
Elvis Roberto Gomez Quispe

Computational Structural Mechanics and Dynamics

Assignment 3.1

On "The Plane Stress Problem":
In isotropic elastic materials (as well as in plasticity and viscoelasticity) it is convenient to use the so-called Lamé constants λ and μ instead of E and ν in the constitutive equations. Both λ and μ have the physical dimension of stress and are related to E and v by

$$
\lambda=\frac{E v}{(1+v)(1-2 v)} \quad \mu=G=\frac{E}{2(1+v)}
$$

1. Find the inverse relations for E, v in terms of λ, μ.
2. Express the elastic matrix for plane stress and plane strain cases in terms of λ, μ.
3. Split the stress-strain matrix E for plane strain as

$$
E=E_{\lambda}+E_{\mu}
$$

in which $\mathrm{E} \mu$ and E_{λ} contain only μ and λ, respectively.
This is the Lamé $\{\lambda, \mu\}$ splitting of the plane strain constitutive equations, which leads to the so-called B-bar formulation of near-incompressible finite elements.
4. Express E_{λ} and E_{μ} also in terms of E and v.

Assignment 3.2

On "The 3-node Plane Stress Triangle":
Consider a plane triangular domain of thickness h, with horizontal and vertical edges of length a. Let us consider for simplicity $a=1, h=1$. The material parameters are E, v. Initially v is set to zero. Two discrete structural models are considered as depicted in the figure:
a) A plane linear Turner triangle with the same dimensions.
b) A set of three bar elements placed over the edges of the triangular domain. The cross sections for the bars are $A_{1}=A_{2}$ and A_{3}.

1. Calculate the stiffness matrices $\boldsymbol{K}_{\boldsymbol{t r i}}$ and $\boldsymbol{K}_{\boldsymbol{b} \boldsymbol{a r}}$ for both discrete models.
2. Is there any set of values for the cross sections $\mathrm{A}_{1}=\mathrm{A}_{2}$ and A_{3} to make both stiffness matrix equivalent: $\boldsymbol{K}_{\boldsymbol{b a r}}=\boldsymbol{K}_{\boldsymbol{r r}}$? If not, which are the values that make them more similar?
3. Why these two stiffness matrices are not equal?. Find a physical explanation.
4. Consider nowidering $v \neq 0$ and extract some conclusions.

Date of Assignment: 19 / 02 / 2018
Date of Submission: 26 / 02 / 2018
The assignment must be submitted as a pdf file named As3-Surname.pdf to the CIMNE virtual center.

Problema 31
1- Encontrar los rolaciones inversas de E. u en Terminos de λ, μ Partimos del analisis lineali in un contexto Anisótropo donde podremos considerar a la laj de hook generalizada:

$$
\sigma_{i j}=C_{l j k l} \varepsilon_{k l} \ldots(I)
$$

Donde el tersor de auarto orden $C_{i j k l}$ delas propiedades del material es considerado como el "malulo elastico".
Considerando la simetria del tensor de esfuerzoj tendremos:

$$
\sigma_{i j}=\sigma_{j i} \Rightarrow C_{j i k l}=C_{i j k l}
$$

Luego para el caso de materales isotropicosiconsiderardo las condiciones de la ecuacion generalizada de hooke ademas de las condiciones de simetria es posible demostrar que el ive de parametros independientes de " C " se reducen a 2 siendo estos λ, μ quedando la ecuacion (I) en esta expresión:

$$
\sigma_{i j}=\lambda \varepsilon_{k k} \delta_{i j}+2 \mu \varepsilon_{i j} \ldots \text { (II) }
$$

Para obtener la expresion inversa (Detormacion en terminos de tensiones) contruemos los indices de la cuación (II):
Si $\sigma_{k k}=\sigma_{x}+\sigma_{y}+\sigma_{z}$

$$
\begin{equation*}
\Rightarrow \sigma_{k k}=\lambda \varepsilon_{k k} \cdot 3+2 \mu \varepsilon_{k k} \Rightarrow \varepsilon_{k k}=\frac{\sigma_{k k}}{(3 \lambda+2 \mu)} \tag{III}
\end{equation*}
$$

Luego susitituyendo la equccion (III) en (II):

$$
\sigma_{1 s}=\lambda \cdot\left(\frac{\sigma_{k k}}{3 \lambda+2 \mu}\right) \cdot \delta_{1 j}+2 \mu \cdot \varepsilon_{i j}
$$

Lurgo despejando $\varepsilon_{i j}$ tendre mos:

$$
\begin{equation*}
\varepsilon_{i j}=\frac{\sigma_{i j}}{2 \mu}=\frac{\lambda}{2 \mu}\left(\frac{\sigma_{k k}}{3 \lambda+2 \mu}\right) \delta_{i j} \ldots \tag{IV}
\end{equation*}
$$

Luego para el caso de compreson u traccion simple:

Dande la unica componente no nula del Tensor de tersiones es V11, Tambien se definen el modulo de Young (E) y el modulo de Porsson (M):

$$
E=\frac{\sigma_{11}}{\varepsilon_{11}} \ldots(\underline{I}) \quad N=-\frac{\varepsilon_{22}}{\varepsilon_{11}}
$$

$$
\begin{aligned}
& \varepsilon_{11}=\frac{\sigma_{11}}{2 \mu}-\frac{\lambda}{2 \mu(3 \lambda+2 \mu)} \cdot\left(\sigma_{11}+\sigma_{22}\right) \cdot \delta_{11} \\
& \varepsilon_{22}=\frac{\sigma_{22}}{2 \mu}-\frac{\lambda}{2 \mu(3 \lambda+2 \mu)} \cdot\left(\sigma_{11}+\sigma_{22}\right) \cdot \delta_{22}
\end{aligned}
$$

Considerando ave $\sigma_{22}=0 ; \delta_{11}=\delta_{22}=1$; tendremos:

$$
\begin{aligned}
& \varepsilon_{11}=\frac{\sigma_{11}(2 \lambda+2 \mu)}{2 \mu(3 \lambda+2 \mu)}=\frac{\sigma_{11}(\lambda+\mu)}{\mu(3 \lambda+2 \mu)} \ldots \text { (VII) } \\
& \varepsilon_{22}=-\frac{\lambda \sigma_{11}}{2 \mu(3 \lambda+2 \mu)} \ldots(\text { IIII) }
\end{aligned}
$$

Finalmente reemplazamos las ecuaciones (VII) i (VللI) en las ccuaciones (V) y (VI) respectivamente :

$$
\left.\begin{array}{l}
E=\frac{\sigma_{11}}{\varepsilon_{11}}=\frac{\sigma_{11}}{\frac{\sigma_{11}(\lambda+\mu)}{\mu(3 \lambda+2 \mu)}=\mu\left(\frac{3 \lambda+2 \mu)}{(\lambda+\mu)}\right.} \\
\mathbf{M}=-\frac{\varepsilon_{22}}{\varepsilon_{11}}=-\left(\frac{-\lambda \cdot \sigma_{11}}{\frac{2 \mu(3 \lambda+2 \mu)}{\sigma_{11}(\lambda+\mu)}}\right) \\
\mu(3 \lambda+2 \mu)
\end{array}\right)
$$

2.

Dela easacion oleil generalizada de hocke en el contexto isotranico " lined: teniamos la earacion (II):

$$
\sigma_{11}=\lambda \varepsilon_{k k} \delta_{11}+2 \mu \varepsilon
$$

huego esta se aude expresar en terminos de los co eficientes de lame en la que interviene la deformacion volumetrica; la torma clasica de las ecuaciones de hame es:

$$
\begin{array}{ll}
\sigma=\lambda e+2 \mu \varepsilon_{x} & \tau_{x y}=\mu Y_{x y} \\
\sigma=\lambda e+2 \mu \varepsilon_{y} & \tau_{x z}=\mu Y_{x z} \\
\sigma=\lambda e+2 \mu \varepsilon_{z} & \tau_{y z}=\mu Y_{y z}
\end{array}
$$

Donde se considera $e=\varepsilon_{x}+\varepsilon_{y}+\varepsilon_{z}$

$$
\delta_{11}=\delta_{22}=\delta_{33}=1
$$

Luesso podremos expresurlas ecuaciones de Lame matricialmente:

$$
\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\sigma_{z} \\
\tau_{x y} \\
\tau_{x z} \\
T_{y z}
\end{array}\right]=\underbrace{\left[\begin{array}{cccccc}
\lambda+2 \mu & \lambda & \lambda & 0 & 0 & 0 \\
\lambda & \lambda+2 \mu & \lambda & 0 & 0 & 0 \\
\lambda & \lambda & \lambda+2 \mu & 0 & 0 & 0 \\
0 & 0 & 0 & \mu & 0 & 0 \\
0 & 0 & 0 & 0 & \mu & 0 \\
0 & 0 & 0 & 0 & 0 & \mu
\end{array}\right]}_{\text {MaTriz de }}\left[\begin{array}{c}
\varepsilon_{x} \\
\varepsilon_{y} \\
\varepsilon_{z} \\
y_{x y} \\
y_{x z} \\
y_{y z}
\end{array}\right] \ldots .
$$

Para el caso del plano de esturanos y deformuciones tendremos:

$$
\left[\begin{array}{c}
\sigma_{x} \\
\sigma_{y} \\
\tau_{x y}
\end{array}\right]=\left[\begin{array}{ccc}
\lambda+2 \mu & \lambda & 0 \\
\lambda & \lambda+2 \mu & 0 \\
0 & 0 & \mu
\end{array}\right] \cdot\left[\begin{array}{l}
\varepsilon_{x} \\
\varepsilon_{y} \\
y_{x y}
\end{array}\right]
$$

3.

Considerando como se vio anteriormente: en là ecuacion matricial (a) tomundo en uenta; que esta integroda por los coeticientes de Lame " $\lambda ; \mu$ " podremos realizar la siguiente descomposición:

En tuncion de λ
$E_{\lambda}=$
Para esluergos en Plaros) $\left[\begin{array}{lll}\lambda & \lambda & 0 \\ \lambda & \lambda & 0 \\ 0 & 0 & 0\end{array}\right]$

$\begin{gathered}\text { En funcion de } \mu \\ E \mu\end{gathered}=\left[\begin{array}{ccc}2 \mu & 0 & 0 \\ 0 & 2 \mu & 0 \\ 0 & 0 & \mu\end{array}\right]$
4.

Representamos las matrices Er y Eu que conforman la matris de elasticidad en función de $E_{y} v$; para lo cual nos basuremor en:

$$
\begin{aligned}
& \lambda=\frac{E \cdot v}{(1+v)(1-2 v)} \quad \mu=\frac{E}{2(1+v)} \\
& E_{\lambda}=\frac{E \cdot v}{(1+v)(1-2 v)}\left[\begin{array}{ccccc}
1 & 1 & 0 & 0 & 0 \\
& 1 & 0 & 0 & 0 \\
& & 0 & 0 & 0 \\
\text { Simetrico } & & & 0 & 0 \\
1
\end{array}\right] \\
& E_{2}=\frac{E V}{(1+v)(1-2 v)}\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
0 & 0 & 0
\end{array}\right] \text { (Para plano de esfurros y defarmaciones) }
\end{aligned}
$$

$$
\begin{aligned}
& E_{\mu}=\frac{E}{2(1+v)}\left[\begin{array}{llllll}
2 & 0 & 0 & 0 & 0 & 0 \\
& 2 & 0 & 0 & 0 & 0 \\
& & 2 & 0 & 0 & 0 \\
\text { Simitrico } & & 1 & 1
\end{array}\right] \\
& E_{\mu}=\frac{E}{2(1+v)}\left[\begin{array}{ccc}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right] \quad \text { (Para plano de esfuersor y deforancionas) }
\end{aligned}
$$

Problema 3.2
Parte 1.
Matriz de Risidez del CTS (KTri)
Por definicion tendremos que: $K^{2}=\tau_{a} A e B^{\top} \cdot E \cdot B$

Luago derorro lla mos:

i)

$$
E=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

corsiderando incaulmente $v=0$

$$
\vec{E}=E\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0.5
\end{array}\right]
$$

ii)

$$
B=\frac{1}{2 A}\left[\begin{array}{cccccc}
y_{23} & 0 & y_{31} & 0 & y_{12} & 0 \\
0 & x_{32} & 0 & x_{13} & 0 & x_{21} \\
x_{32} & y_{23} & x_{13} & y_{31} & x_{21} & y_{12}
\end{array}\right]
$$

Considerando el valor del area $A=\frac{(1)(1)}{2}=0.5$

$$
B=1 \cdot\left[\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 \\
-1 & -1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

hueao considerando el espesor; $\tau e=1$; Tendemos:

$$
K_{i r i}=K_{e}=\operatorname{Te} \cdot A \cdot\left[\begin{array}{ccc}
-1 & 0 & -1 \\
0 & -1 & -1 \\
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
E & 0 & 0 \\
0 & E & 0 \\
0 & 0 & 0.5 E
\end{array}\right]\left[\begin{array}{cccccc}
-1 & 0 & 1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 1 \\
-1 & -1 & 0 & 1 & 1 & 0
\end{array}\right]
$$

K_{e}	$=\operatorname{te.A.E}\left[\begin{array}{cccccc}1.5 & 0.5 & -1 & -0.5 & -0.5 & 0 \\ & 1.5 & 0 & -0.5 & -0.5 & -1 \\ & & 1 & 0 & 0 & 0 \\ & & & 0.5 & 0.5 & 0 \\ \text { SimeTrico } & & & 0.5 & 0 \\ K_{\text {TRI }} & =K_{e} & =E\left[\begin{array}{cccccc}0.75 & 0.25 & -0.5 & -0.25 & -0.25 & 0 \\ & 0.75 & 0 & -0.25 & -0.25 & -0.5 \\ & & 0.5 & 0 & 0 & 0 \\ & & & 0.25 & 0.25 & 0 \\ \text { Simetrico } & & & 0.25 & 0 \\ & & & & \end{array}\right]\end{array}\right.$,

Ma Tris de Risides de la ormadura M(bar)

Luego Tendremos la matriz de rigidezz cara cada barra:

$$
\begin{aligned}
& K_{1}=\frac{F A_{1}}{l_{1}=1} \cdot\left[\begin{array}{cccc}
0 & 0 & 5 & 6 \\
& 1 & 0 & 0 \\
& 1 & -1 \\
& & 0 & 0 \\
& =\frac{x_{3}-x_{1}}{l_{1}}=0 \\
\text { Simetrico } & & 1
\end{array}\right] \begin{array}{l}
1 \\
2 \\
m=\frac{y_{3}-y_{1}}{l_{1}}=1
\end{array}, \begin{array}{l}
5 \\
5
\end{array} \\
& \hline
\end{aligned}
$$

$$
\begin{aligned}
& l=\frac{K_{2}-X_{1}}{l_{2}}=1\left[\begin{array}{cccc}
1 & 2 & 3 & 4 \\
l_{2}=1 \\
1 & 0 & -1 & 0 \\
& 0 & 0 & 0 \\
& 1 & 0 \\
\text { Simetrico } & & 0
\end{array}\right] \begin{array}{l}
1 \\
4
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& m=\frac{y_{3}-y_{2}}{l_{3}}=\frac{1}{\sqrt{2}}
\end{aligned}
$$

Lueso ensamblamos para encontrar la matria de rinidez total de la armadura:
$K_{\text {bur }}=K_{\tau}=E \cdot A$.

Parte $2=$
Si observamos las matries de risides obtenidas del plano triargular (ETs) KTRi u la matriz de riades de la armadura K bar. notamuspara ninoun valor de $A=A_{1}=A_{2}=A_{3}$ se podra conse guir igua lar $K_{T R 1}=K \mathrm{Kbar}$ Ass tambien notamos que podremos aproximar ambas matrices; si asumimos un valor un vulor de $A=0.5$ j obteniendo:

$$
\text { Khor }=K_{T}=E .\left[\begin{array}{cccccc}
0.5 & 0 & -0.5 & 0 & 0 & 0 \\
& 0.5 & 0 & 0 & 0 & -0.5 \\
& & 0.077 & -0.177 & -0.25 & 0.25 \\
& & 0.177 & 0.25 & -0.25 \\
\text { Simetrico } & & & 0.177 & -0.177 \\
& & & & & 0.677
\end{array}\right]
$$

Se resaltan los valores similares respecto ala maTriz de Rigidaz "Kari"

ParTe 3.
Las 2 matrices no son iavales tuda vez ave la concapción de viosidez son diferentes; mientras que en el caso del plano (Ktri) i esta se comporta como un solido risido ya sue solo oresentará movimiento inteoral de todo el cuerpo ante una corisa en las direcciones x, y :

Mientras que la armadura (Kbar); se comportará como un cuerpo harras articuladas: no involvcrando a toda la estructura en las respue--stai del cuerno, ante la accion de las coresas en x,y:

Porte 4
Al darse el caso que $V \neq 0$: entonces estaremos considerando que se comenzará a presentar una deformocion tronsversal ($\varepsilon:-2$) por lo que se involucraría aue la rigides se vería afectada en una disminucion de su capacidad, por la variauon dela sección.

Lueso Tendremos:

$$
E=\frac{E}{1-\nu)^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
V & 1 & 0 \\
0 & 0 & \frac{1-\nu}{2}
\end{array}\right]
$$

$$
K^{e}=\int_{\Omega} \operatorname{te} \hat{B} E \vec{E} B
$$

