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Assignment 3.1:

In isotropic elastic materials (as well as in plasticity and viscoelasticity) it is convenient
to use the so-called Lamé constants % and p instead of E and v in the constitutive
equations. Both L and p have the physical dimension of stress and are related to E and v

by
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3. The constitutive matrix correspond to the plane strain problems can be split in two matrices,
one matrix will contain only m parameter and the other will contain | .
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4. Each matrix E, written above, can be expressed in terms of Eand u as:
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Assignment 3.2:
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Figure 1: Two discrete structural models a) Triangle, b) Triangle formed by bars.

Parameters:
For simplicity it will consider a = 1 and h (thickness) = 1. The material parameters are E and u,
initially u= 0. It will consider plane stress problem.

1. Stiffness matrix for each discrete model is:

Stiffness matrix for the discrete structure modelled with a triangle.
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As the problem is a plane stress problem, the constitutive matrix is:
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As B, E and h are constant over the triangle, they can be taken off of the integral. Finally, the
stiffness matrix is:
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Stiffness matrix for the discrete structure modelled with bars.

Taking into account the first assignment, the stiffness matrix can be formed considering the
stiffness matrix of each bar separately and then, the assembly process can be applied. In this
case A;=A=A.
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Now, Kpars = Kbarfl"' Kbar72+ Kbar73

>

-A 0 0 0
0 0 0 -A

0
A
0 A+0.25\2A; -025V2A, -0.25V2A, 0.25V2A,
0
0

)'>o

bars

-0.25\2A,  0.25\2A, 0.25V2A, -0.25\2A,
-0.25\2A,  0.25\2A, 0.25V2A, -0.25\2A,
-A 025V2A, -0.25V2A, -0.25V2A, A+0.252A,;

[ e e ey e ey ey ey o]

~

11

m
D: > D> D D> D> (D> D> D> D~
o O O



2. It can be seen that both matrices are different, it is difficult to find some values A;=A, and A;
to make both stiffness matrix equivalent.
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If A :% and A, :% some components of both matrices are equal.

3. Firstofall, it can be said that the differences between these two matrices lies in the fact that
bar elements have 1 degree of freedom per node while triangular elements have two degrees
of freedom per node, in other words, bars have axial stiffness and triangles have stiffness in x
and y direction. Bar elements are 1D elements while triangle elements are 2D elements. Bar
elements are able to support axials stresses and triangular elements can support not only axials
stresses, but also, shear stresses.

Second, each zero component of the stiffness matrix does not contribute in the stiffness of the
system, then, the system is less able to support loads.

Finally, physically speaking the internal points of the triangle, that form its area, contribute to
the stiffness of the system. While, the areas of the bars only contribute to the stiffness of the
system.

4. Considering the fact that u® 0 then, the triangle stiffness matrix will be:
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It can be seen that some components that were zero before, now are not. This contributes in
the stiffness of the system.



