MAESTRÍA EN INGENIERÍA ESTRUCTURAL Y DE CONSTRUCCIÓN UNIVERSITAT POLITÉCNICA DE CATALUNYA

TRABAJO ${ }^{\circ}{ }^{\circ} 02$:
 FEM Modelling: Introduction Variational Formulation

Student:

Elvis Roberto Gomez Quispe

Computational Structural Mechanics and Dynamics

Assignment 2.1

On "FEM Modelling: Introduction":

1. Identify the symmetry and antisymmetry lines in the two-dimensional problems illustrated in the figure. They are:
(a) a circular disk under two diametrically opposite point forces (the famous "Brazilian test" for concrete)
(b) the same disk under two diametrically opposite force pairs
(c) a clamped semiannulus under a force pair oriented as shown
(d) a stretched rectangular plate with a central circular hole.
(e) and (f) are half-planes under concentrated loads.
2. Having identified those symmetry/antisymmetry lines, state whether it is possible to cut the complete structure to one half or one quarter before laying out a finite element mesh. Then draw a coarse FE mesh indicating, with rollers or fixed supports, which kind of displacement BCs you would specify on the symmetry or antisymmetry lines.

Figure 2.1.- Problems for assignment 2.1

Assignment 2.2

On "FEM Modelling: Introduction":

1. The plate structure shown in the figure is loaded and deforms in the plane of the paper. The applied load at D and the supports at I and N extend over a fairly narrow area. List what you think are the likely "trouble spots" that would require a locally finer finite element mesh to capture high stress gradients. Identify those spots by its letter and a reason.

Figure 2.2.- Inplane bent plate

Assignment 2.3

On "Variational Formulation":

1. A tapered bar element of length l and areas A_{i} and A_{j} with A interpolated as

$$
A=A_{i}(1-\xi)+A_{j} \xi
$$

and constant density ρ rotates on a plane at uniform angular velocity $\omega(\mathrm{rad} / \mathrm{sec})$ about node i. Taking axis x along the rotating bar with origin at node i, the centrifugal axial force is $q(x)=\rho A \omega^{2} x$ along the length in which x is the longitudinal coordinate $x=x^{e}$.

Find the consistent node forces as functions of $\rho, A_{i}, A_{j}, \omega$ and l, and specialize the result to the prismatic bar $A=A_{i}=A_{j}$.

Date of Assignment: 12 / 02 / 2018
Date of Submission: 19 / 02 / 2018
The assignment must be submitted as a pdf file named As2-Surname.pdf to the CIMNE virtual center.

Prikere 1.1
(a)

En mallordo
de curvas
madiante coord
1soparametricas
Zunkiewic3,0.C
y D.V. Philips
(b)

(c)

(d)

(e)

(f)

Pritema 2.2

1° Para conowr la dirtribucion de esfuerzos, recordaremos el comporta mi ento a flexion de ura uiga; uprovimadamente; el caso solicitado será similar:
$\begin{array}{ll}\text { corte } \\ \text { maxime } & 5< \\ & \text { Honento maximo }\end{array}$
corte
maximo

20 Situamos los en fuerzos a presentarse:

(Tugrwaes)
3. Final mente indicamos las zras de gradientes de alto ertres:

* Considerunda tarea interpotada de la barros cunica:

$$
\begin{equation*}
A=A_{i}\left(1-\xi_{j}\right)+A_{j} \xi . \tag{I}
\end{equation*}
$$

* Comsderando la representocion óveriación de lo fuarza cuntrifuga en función de la posción, odemas de tros porametros

$$
q(x)=\rho A w^{2} \cdot x \ldots \text { (Is) }
$$

- Considerando los metodos varacionales, para detorminar el vector da fuerzos ant. modales, Tenemus:

$$
\text { dert }=\int_{0}^{1} q\left[\begin{array}{c}
1-\xi \tag{III}\\
\xi
\end{array}\right] \ell d \xi \ldots
$$

Poemplazando (II) en (III):

$$
\begin{aligned}
& f \text { or }=\int_{0}^{1} \underline{\rho A \omega^{2} l}\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] l \xi^{2} \\
& f a r=\int_{0}^{1} \rho \underline{\underline{\left(A_{i}(1-\xi)+A_{j} \xi_{j}\right)}} \cdot \omega^{2} \cdot l\left[\begin{array}{c}
1-\xi \\
\xi
\end{array}\right] \cdot l d \xi \\
& \text { fur }=p w^{2} \cdot l^{2} \int_{0}^{\eta}\left(A_{i}-A_{i} \xi+A_{j} \xi\right)\left[\begin{array}{c}
1-\xi \xi \\
\xi
\end{array}\right] d \xi \\
& f+e^{t}=p \omega^{2} l^{2} \int_{0}^{1}\left[\begin{array}{l}
A_{i}-A_{i} \xi+A_{j} \xi-A_{i} \xi+A_{i} \xi^{2}-A_{j} \xi^{2} \\
A_{i} \xi-A_{i} \xi^{2}+A_{j} \xi^{2}
\end{array}\right] d \xi \\
& j=T=p \omega^{2} l^{2}\left(\left.\left[\begin{array}{c}
A_{i} \xi^{2}-\frac{2 A_{1} \xi^{2}}{2^{2}}+\frac{A_{j} \xi^{2}}{2}+\frac{A_{i} \xi^{3}}{3}-\frac{A_{j} \xi^{3}}{3} \\
\frac{A_{i} \xi^{2}}{2}-\frac{A_{i} \xi^{3}}{3}+\frac{A_{j} \xi^{3}}{3}
\end{array}\right]\right|_{0} ^{1}\right. \\
& \beta_{i p} t=\rho \omega^{2} l^{2}\left[\begin{array}{c}
A_{i}(1)-\frac{2\left(A_{i}\right)}{2}+\frac{A_{j}}{2}+\frac{A_{i}}{3}-\frac{A_{j}}{3} \\
\frac{A_{i}}{2} \frac{A_{i}}{3} \frac{A_{j}}{3}
\end{array}\right] \\
& f a_{p} T=p \omega^{2} \lambda^{2}\left[\begin{array}{c}
\frac{A_{i}}{3}+\frac{\Delta_{j}}{6} \\
\frac{\Delta_{i}}{6}+\frac{\Delta_{1}}{3}
\end{array}\right] \\
& \text { - finalmente para el coro } A=A_{i}=A_{j} \text { : foetropail}\left[\begin{array}{l}
\frac{A}{2} \\
\frac{A}{2}
\end{array}\right]
\end{aligned}
$$

