

MAESTRÍA EN INGENIERÍA ESTRUCTURAL Y DE CONSTRUCCIÓN UNIVERSITAT POLITÉCNICA DE CATALUNYA

TRABAJO N°01: THE DIRECT STIFFNESS METHOD

Student:

Elvis Roberto Gomez Quispe

Assignment 1.1

On "The Direct Stiffness Method"

Consider the truss problem defined in the figure 1.1. All geometric and material properties: L, α , E and A, as well as the applied forces P and H are to be kept as variables. This truss has 8 degrees of freedom, with six of them removable by the fixed-displacement conditions at nodes 2, 3 and 4. This structure is statically indeterminate as long as $\alpha \neq 0$.

Figure 1.1.- Truss structure. Geometry and mechanical features

1. Show that the master stiffness equations are,

$$\frac{EA}{L} \begin{bmatrix} 2cs^2 & 0 & -cs^2 & c^2s & 0 & 0 & -cs^2 & -c^2s \\ 1+2c^3 & c^2s & -c^3 & 0 & -1 & -c^2s & -c^3 \\ & cs^2 & -c^2s & 0 & 0 & 0 & 0 \\ & & c^3 & 0 & 0 & 0 & 0 \\ & & & 0 & 0 & 0 & 0 \\ & & & cs^2 & c^2s \\ symm & & & & & cs^2 & c^2s \\ \end{bmatrix} \begin{bmatrix} u_{x1} \\ u_{y1} \\ u_{x2} \\ u_{y2} \\ u_{x3} \\ u_{y3} \\ u_{x4} \\ u_{y4} \end{bmatrix} = \begin{bmatrix} H \\ -P \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

in which $c = \cos \alpha$ and $s = \sin \alpha$. Explain from physics why the 5th row and column contain only zeros.

- 2. Apply the BC's and show the 2-equation modified stiffness system.
- **3.** Solve for the displacements u_{x1} and u_{y1} . Check that the solution makes physical sense for the limit cases $\alpha \to 0$ and $\alpha \to \pi/2$. Why does u_{x1} "blow up" if H $\neq 0$ and $\alpha \to 0$?
- 4. Recover the axial forces in the three members. Partial answer: $F^{(3)} = -H/(2s) + Pc^2/(1+2c^3)$. Why do $F^{(1)}$ and $F^{(3)}$ "blow up" if $H \neq 0$ and $\alpha \rightarrow 0$?
- 5. Dr. Who proposes "improving" the result for the example truss of the 1st lesson by putting one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided in two different members: (3) 1-4 and (4) 3-4. His "reasoning" is that more is better. Try Dr. Who's suggestion by hand computations and verify that the solution "blows up" because the modified master stiffness is singular. Explain physically.

Assignment 1.2

Dr. Who proposes "improving" the result for the example truss of the 1st lesson by putting one extra node, 4 at the midpoint of member (3) 1-3, so that it is subdivided in two different members: (3) 1-4 and (4) 3-4. His "reasoning" is that more is better. Try Dr. Who's suggestion by hand computations and verify that the solution "blows up" because the modified master stiffness is singular. Explain physically.

Date of Assignment:	5 / 02 / 2018
Date of Submission:	12 / 02 / 2018

The assignment must be submitted as a pdf file named **As1-Surname.pdf** to the CIMNE virtual center.

Parte O

Solución:

* Considerando la numeroción: + Considerando la Rigidez Direta: tendremos: (2) 8 7 5 6 4 H MxI 205 ·P -05 0-1 - 25 My 1+203 052 052 $-c^2 \leq 0$ $c^3 \circ$ 0 0 Mx2 0 Ø D 0 D Ø Ø 00 My3 ø 0 0 1 6 cśz Myy 2's υ 7 MY4 с³ 0 Simetrico

Como obrenvames, para que se cumpla: Ksj = K15=0 i=1,2,...8 Le deberá cumplir que ho hay corgas que afecter la coordenada 3, de tol monera no se requiera su rigidoz.

* Considerando la regla de equilibrio en modos; tendremos en el modo 3:

 F3y = F13 A F3x =0
 No hobran juurjas que actiun en coordemada (5)
 Tendremos: K5j = Kis =0 i = 1,2,....8 j=1,2,....8

Porte 2.

Solución :

* Considerando las condiciones de barde, la matriz de rigidez se condensará,

n quedorá de la siguiente manera:		
	0 - 4 ² - 4 ²	UX1 H
() 2 c 5 0 - C 5 C F	$a - c^{2} = -c^{3}$	Mya -P
2 1+2c cos -c	0 0 0 - 0 -	4x7 0-
	0 0 0 0	Myz-o
	0 0 0 0	MX3 FO
	4 0 - 0	My3-0
() Simetrico	S12 C25	Myy o
e		Myy o

* Pudiendose presentar las acuaciones:

$$EA = \begin{bmatrix} 2 c s^{2} & 0 & \mu_{x_{1}} & H \\ 0 & 1 + 2c^{3} & \mu_{y_{1}} & = -P \end{bmatrix}$$

$$Mx_{1} = \begin{bmatrix} 4 \\ \mu_{y_{1}} & -P \end{bmatrix}$$

$$\frac{1}{2} c s^{2} \cdot EA = \begin{bmatrix} 0 & -1 \\ H \\ \mu_{y_{1}} & 0 & (1 + 2c^{3}) \cdot EA \\ -P \end{bmatrix}$$

Porte D

Solución: $\begin{array}{c}
-1 \\
H_{\chi_{I}} \\
H_{\chi_{I}} \\
H_{\chi_{I}} \\
= 2cs^{2} \cdot \underline{EA} \\
0 \\
(1+2c^{3}) \\
\underline{E} \cdot \underline{A} \\
-P
\end{array}$

+ Empleanes el metodo de gauss para calcular la inversa: $2 c s^{2} EA = 0$ $10 f_{1} \times \frac{L}{2cs^{2} EA} = 1 0 \frac{L}{2cs^{2} EA} = 0$ $0 (1+2c^{3}) EA = 1 + 2v \frac{L}{(1+2c^{3}) EA} = 0 + 0 = \frac{L}{(1+2c^{3}) EA}$

$$\begin{array}{c} \mathcal{M}_{\chi 1} = \underbrace{\frac{L}{2 \, c \, s^{2} \, \text{E} \, \text{A}}}_{0} & H \\ \mathcal{M}_{y_{1}} = \underbrace{0}_{(1+2 \, c^{3}) \, \text{E} \, \text{A}} & -P \end{array}$$

derarrollando:

$$\mathcal{H}_{X1} = \frac{H \cdot L}{2 C S^{2} E \cdot A}$$

$$\mathcal{H}_{y_{1}} = \frac{-L \cdot P}{(1 + 2C^{3}) E A}$$

luego evaluarement poror las tendencias; en un contexto de limiter:

$$\begin{array}{l} (X \rightarrow 0) \begin{cases} \lim_{\substack{\alpha \rightarrow 0 \\ \alpha \rightarrow 0 \\ \text{Lim} (\mu_{y_{1}}) = \infty \\ \lim_{\substack{\alpha \rightarrow 0 \\ \alpha \rightarrow 0}} (\mu_{y_{1}}) = \frac{-LP}{3EA} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array}$$
 \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0) \\ \end{array} \\ \begin{array}{l} (X \rightarrow 0

* No Tamos que para $\mu_{XI} = \infty$, para $H \neq 0$ y $\alpha \rightarrow 0$, la aud se da, Toda uns que conforme a $\rightarrow 0$, se irá concelando las fuerzos de equilibrio; por lo que se perderei una delas reglas, os decir la del equilibrio; por lo que tendera al des plazamientos como se aprecias

Parte 4

Solución :

- + Considerando el valor de: $F^{(3)} = -\frac{H}{23} + \frac{P.c^2}{(1+2c^3)}$ (a)
- * Conviderando la hipotesir de equilibrio, podremos planteor el equilibrio de fuerjas en el nodo (): $\mathbb{Z}F_{x}=0$: $F^{(3)}_{,,s} = H + F^{(2)}_{,s} = \dots$ (b) $\mathbb{Z}F_{y}=0$: $F^{(2)}_{,+} + F^{(2)}_{,+} c + F^{(3)}_{,c} = P \dots$ (c)

Reemplazando (a) en (b):

$$F^{(1)} = F^{(3)}_{S} S^{1}_{-H} = \left(\frac{-H}{2S} + \frac{Pc^{2}}{(1+2c^{3})}\right) S^{1}_{S} - H = -\frac{3H}{2S} + \frac{Pc^{2}}{(1+2c^{3})}$$

$$F^{(2)}_{=} P - F^{(1)}_{\cdot} c - F^{(3)}_{\cdot} c = P - c \left(F^{(1)}_{+} + F^{(3)} \right)$$

$$F^{(2)}_{=} P - c \left(\left(\frac{-3H}{2s} + \frac{Pc^2}{(1+2c^3)} \right) + \left(\frac{-H}{2s} + \frac{Pc^2}{(1+2c^3)} \right) \right)$$

$$F^{(2)}_{=} P - c \left(-\frac{2H}{s} + \frac{2Pc^2}{(1+2c^3)} \right)$$

$$F^{(2)}_{=} P + 2\frac{H\cdot c}{s'} - \frac{2Pc^3}{(1+2c^3)}$$

((3))

Parte 6

Solución

- * Entonas verificamos la sugerenva del dactor Who:
- + Respecto a los fuerzos Axiales:

Obrirvamos que considerando la hipótesis de equilibrio, obrervamos en el modo (5) lo rigoiente: ZFy=0: F53=F15

Entonos, nota que la fuerza avaid será la misma. ahora si avai dera mos; muchos nodos, observa mos que los valores de la fuerza avial sera la mirma; por lo que nota mos que no sera necerorio incrementar mollos entre los extremos, pora conour reputtodos mas adecuadosse detallados

EFy=0: Fs6= F67= = Fm1

& Respeto al desplagarmiento Considerance las suraciones de rigidez:

5

7

e

FSG FSG

FG

$$\begin{bmatrix} F \end{bmatrix} = \begin{bmatrix} K \end{bmatrix} \cdot \begin{bmatrix} X \end{bmatrix}$$

$$\begin{bmatrix} X \end{bmatrix} = \begin{bmatrix} K \end{bmatrix}^{-1} \begin{bmatrix} F \end{bmatrix}$$

condensando La matriz de rigidez:

$$\begin{bmatrix} M_{1X} \\ M_{1Y} \end{bmatrix} = \begin{bmatrix} K_{11} K_{22} & K_{23} & K_{14} \\ K_{21} & K_{22} & K_{23} & K_{24} \\ K_{31} & K_{32} & K_{33} & K_{34} \\ M_{5Y} \end{bmatrix} = \begin{bmatrix} K_{41} & K_{42} & K_{43} & K_{44} \\ K_{41} & K_{42} & K_{43} & K_{44} \\ \end{bmatrix}$$

lugo podremor conour los valerer de los desplazamientos.

$$M_{5x} = -K'_{31} \cdot P + K'_{32} \cdot H$$

 $M_{5y} = -K_{41} \cdot P + K'_{42} \cdot H$

=> Obrervamos que si usignamos vodos, podremos conour a détalle, el Valor de los desplazamientos en el interior de la barra, por lo que convendría asignar modos.

* A hora verificames la singularidad de la matriz de rigidez, considerando d'incremente de nodes:

Obrervare mos la forma de la banda escalomada, rerottado de la asignoción de coordenadas conrecutivos de las contridod de nodor asignodos; ahora procedemos a hallar la disterminante dela matriz de rigidez condensada.

Para le cual aplicames el metodo de los afetores:

$$\begin{array}{l} K_{12} & K_{12} & K_{13} & K_{14} & \circ & \circ & \cdots \\ K_{14} & K_{12} & K_{23} & K_{24} & \cdots \\ K_{4} & K_{22} & K_{23} & K_{24} & \cdots \\ K_{4} & K_{42} & K_{43} & K_{44} & \cdots \\ \circ & \circ & K & K \\ \circ & \circ & K & K \\ \vdots & \circ & \cdots \\ \end{array}$$

$$\begin{array}{l} K' = (-1)^{4+4} & \left(a \in \underline{A}\right) \left| K' \right| + (-1)^{a+4} (b \in \underline{A}) \left| K'' \right| + (-1)^{3+4} (c \cdot \underline{EA}) \left| K'' \right| \\ + (-1)^{4+4} & \left(d \cdot \underline{EA}\right) \left| K'' \right| \\ \end{array}$$

$$\begin{array}{l} A \text{ hore considerando } & L \Rightarrow \circ ; \text{ enum centeste de limitel:} \\ \\ \text{Dim} (|K|) = (+1) & (\infty) + (-1) & (\infty) + (-1) & (\infty) \\ \\ L \Rightarrow \circ \\ \end{array}$$

$$\begin{array}{l} For \ b \ que tenderma que cen la continua modulicamenta de a structura incomposando nodos; inducirrimos a la formación de una mateiz \\ de \ Rigidos ungulor, les \ deur sin imbersa. \end{array}$$