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Assignment 1: 

 

 

Elemental stiffness matrix 

According to the slides of Professor Cervera, the elemental stiffness matrix of an oblique bar is: 

 

 

 

 

Where: 

c = cos ()

s = sin () 
 

Bar 1 

In order to define the elemental stiffness matrix in terms of c and s, it will be necessary to use the 
trigonometric identity written below.  

     

     

 

  

cos( ) cos( )cos( ) sin( )sin( )

sin( ) sin( )cos( ) cos( )sin( )
 

The angle of bar 1 respect to the global coordinate system is 90+. Using the identity above it is 
obtained the next relationship. 

   

   

    

   

cos(90 ) cos(90)cos( ) sin(90)sin( ) sin( )

sin(90 ) sin(90)cos( ) cos(90)sin( ) cos( )
 

X 

Y 




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Taking into account the elemental stiffness matrix of an oblique bar and the relation before, then it 
is obtained the elemental stiffness matrix for bar 1: 

2 2

2 2

2 2

2 2

1

s cs s cs 0 0 0 0

cs c cs c 0 0 0 0

s cs s cs 0 0 0 0

cs c cs c 0 0 0 0EA
K c

L 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

  
 
  
  
 

  


 
 
 
 
 
  

 

Remark 1: It was named c = - sin () =-s and s= cos () =c. 

Remark 2: In order to simplify the assembly operation, it increased the elemental stiffness matrix. 

Remark 3: Le = L/cos(or Le = L/c. 

Bar 2 

The Bar 2 is a vertical bar, so, the elemental stiffness matrix is: 

2

0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0EA
K

0 0 0 0 0 0 0 0L

0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 


 
 
 
 
 
 

 
 
 
  

 

Remark 1: As it has seen in the stiffness matrix of bar 1, it increased the elemental stiffness matrix. 

Bar 3 

Since bar 3 is an oblique bar, it will be used the same concept used for the bar 1.  

The angle of bar 3 respect to the global coordinate system is 90-. Using the identity above it is 
obtained the next relationship. 

cos(90 ) cos(90)cos( ) sin(90)sin( ) sin( )

sin(90 ) sin(90)cos( ) cos(90)sin( ) cos( )

   

   

   

   
 

Taking into account the elemental stiffness matrix of an oblique bar and the relation before, then it 
is obtained the elemental stiffness matrix for bar 3: 
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2 2

2 2

3

2 2

2 2

s cs 0 0 0 0 s cs

cs c 0 0 0 0 cs c

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0EA
K c

L 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

s cs 0 0 0 0 s cs

cs c 0 0 0 0 cs c

  
 

  
 
 
 


 
 
 
 
 
 
   

 

Remark 1: It was named c = sin () = s and s= cos () =c. 

Remark 2: In order to simplify the assembly operation, it increased the elemental stiffness matrix. 

Remark 3: Le = L/cos(or Le = L/c. 

Assembly process 

a) As the elemental stiffness matrices have been prepared for simplifying this process, 
then it is obtained the global stiffness matrix as Kglob = K1+ K2+ K3 

 
2 2 2 2 2

3 2 3 2 3

2 2 2 2

2 3 2 3

glob

2 2 2 2

2 3 2 3

2cs 0 cs c s 0 0 cs c s

0 2c 1 c s c 0 1 c s c

cs c s cs c s 0 0 0 0

c s c c s c 0 0 0 0EA
K

L 0 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0

cs c s 0 0 0 0 cs c s

c s c 0 0 0 0 c s c

   
 

     
  
 

  


 
 

 
 
 
 
   

 

 
As it can be seen the 5th row and column contain only zeros, the physical meaning is 
corresponded to the fact that there is no horizontal reaction force on the node 2, so, there 
is no contribution in the stiffness of the system. Only the horizontal reaction forces of the 
node 1 and 3 counterbalance the effect of the horizontal force called H in order to satisfied 
the equilibrium equation in the x direction. 
 
b) The BC of the problem are: 

x2 y2

x3 y3

x4 y4

Node 2 u u 0

Node 3 u u 0

Node 4 u u 0

 

 

 

  

Applying the BC, the system of equation will be reduced to: 
 

2
x1

3
x2

u H2cs 0EA

u PL 0 1 2c

     
     

     
 

Where:  
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2
x1

3
x2

u H2cs 0EA ˆˆ ˆK     u    f
u PL 0 1 2c

     
       

     
 

 
c) Solving the system of equation written above, the unknown displacements will be: 

x1 y12 3

H L P L
u ,  u

2cs EA (1 2c ) EA


 


 

Limits cases  = 0 and  = /2: 

1)  = 0 

x1 20 0

y1 30 0

H L
limu lim  

2cs EA
P L PL

limu lim
(1 2c ) EA 3EA

 

 

 

 

 

 
 



 

 

2)  = /2 

x1 2

2 2

y1 3

2 2

H L
lim u lim  

2cs EA

P L PL
lim u lim

(1 2c ) EA EA

 
 

 
 

 

 

 

 
 



 

 

In the case of  = 0, x1u  tend to infinite due to the structure becomes in a mechanism where 

the nodes 2, 3 and 4 concur at the same node, in this case at node 3. On the other hand, the 

displacement y1u  is 3 time less than the displacement obtained in the case 2. The reason is due 

to the stiffness of the system ( = 0) is 3 time larger than the system obtained with  = /2. 
 

d) Axial Forces in the three members. 
For each member, it will necessary extract ue from u and transform them to local 
displacement taking into account the expression written below: 
 

e e eu T u  

Where: 

e

c s 0 0

s c 0 0
T

0 0 c s

0 0 s c

 
 

 
 
 

 

 

 

Once obtained eu , then, compute d as e e
xj xid u u  and finally compute the axial force as 

e e

e

E A
F d

L
  
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Axial Force in Bar 1 

1

s c 0 0

c s 0 0
T

0 0 s c

0 0 c s

 
 
 
 
 
 

  

 

2

31

HL

2cs EA
PL

u
(1 2c )EA

0

0

 
 
 

 
  
 
 
 
 

 

Remark 1: It was named c = - sin () =-s and s= cos () =c. 

3

3 21 1 1

HL PLc

2EAcs EA(1 2c )

PLs HL
u T u

EA(1 2c ) 2EAs

0

0

 
  
 
 

   
 
 
 
 

 

Finally, the axial force will be: 
2

1 1 3

EA H Pc
F d c

L 2s (1 2c )
  


(traction) 

Where 

1 3

HL PLc
d 0 ( )

2EAcs EA(1 2c )
   


 

 

Axial Force in Bar 2 

In this case the angle between bar 2 and the “x” axial is 90°. So, the matrix T2 will be: 

2

0 1 0 0

1 0 0 0
T

0 0 0 1

0 0 1 0

 
 

 
 
 

 

 

2

32

HL

2cs EA
PL

u
(1 2c )EA

0

0

 
 
 

 
  
 
 
 
 

 

3

2 2 2 2

PL

EA(1 2c )

HL
u T u

2EAcs

0

0

 
 
 
 

   
 
 
 
 

 

Finally, the axial force will be: 

2 2 3

EA Pc
F d c

L (1 2c )
 


(traction) 

Where 

2 3

PL
d 0 ( )

EA(1 2c )
  


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Axial Force in Bar 3 

3

s c 0 0

c s 0 0
T

0 0 s c

0 0 c s

 
 

 
 
 

 

 

2

33

HL

2cs EA
PL

u
(1 2c )EA

0

0

 
 
 

 
  
 
 
 
 

 

Remark 1: It was named c = sin () = s and s= cos () =c. 

3

2 33 3 3

HL PLc

2EAcs EA(1 2c )

HL PLs
u T u

2EAs EA(1 2c )

0

0

 
 

 
 
    
 
 
 
 

 

Finally, the axial force will be: 
2

3 3 3

EA H Pc
F d c

L 2s (1 2c )
   


 

Where 

3 3

HL PLc
d 0 ( )

2EAcs EA(1 2c )
  


 

In the limit case where  = 0 and H 0 , F1 and F3 tend to infinite due to the structure becomes in a 
mechanism where the nodes 2, 3 and 4 concur at the same node, in this case node 3. The existence 

of a horizontal force H produce an imbalance of moments ( M 0 ) and a rotation around the 

node 3. 
 

Assignment 2: 

 
 

So, the scheme will be: 

 
Taking into account all the consideration and remark that they had taken into account when the 
elemental stiffness matrices were computed, therefor it will proceed the compute the new 
elemental stiffness matrices. 
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Bar 1 
The elemental stiffness matrix for bar 1: 

1

10 0 10 0 0 0 0 0

0 0 0 0 0 0 0 0

10 0 10 0 0 0 0 0

0 0 0 0 0 0 0 0
K

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
  

 

Bar 2 
the elemental stiffness matrix for bar 2: 

2

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 5 0 5 0 0
K

0 0 0 0 0 0 0 0

0 0 0 5 0 5 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

 
 
 
 
 

 
 
 

 
 
 
  

 

Bar 3 
The Bar 3 is a vertical bar, so, the elemental stiffness matrix is: 

3

20 20 0 0 0 0 20 20

20 20 0 0 0 0 20 20

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
K

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

20 20 0 0 0 0 20 20

20 20 0 0 0 0 20 20

  
 

 
 
 
 
 
 
 
 
  
 
   

 

Bar 4 
The Bar 4 is a vertical bar, so, the elemental stiffness matrix is: 

4

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
K

0 0 0 0 20 20 20 20

0 0 0 0 20 20 20 20

0 0 0 0 20 20 20 20

0 0 0 0 20 20 20 20

 
 
 
 
 
 
  
 

  
  
 

   
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Assembly process 

As the elemental stiffness matrices have been prepared for simplifying this process, then it 
is obtained the global stiffness matrix as Kglob = K1+ K2+ K3 + K4. 

glob

30 20 10 0 0 0 20 20

20 20 0 0 0 0 20 20

10 0 10 0 0 0 0 0

0 0 0 5 0 5 0 0
K

0 0 0 0 20 20 20 20

0 0 0 5 20 25 20 20

20 20 0 0 20 20 40 40

20 20 0 0 20 20 40 40

   
 

 
 
 
 

 
  
 

   
    
 
     

 

 
After applying BC, the modified master stiffness will be: 
 

glob

10 0 0 0 0

0 20 20 20 20

K̂ 0 20 25 20 20

0 20 20 40 40

0 20 20 40 40

 
 

 
 
   
 

  
   

 

It can be seen that the matrix globK̂  is singular (row 4 and 5 are linearly dependent or glob
ˆdet(K ) 0 ). 

So, the system of equation cannot be solved. 
 

x2

x3

y3

x4

y4

u10 0 0 0 0 0

u0 20 20 20 20 2

u0 20 25 20 20 1

u0 20 20 40 40 0

u0 20 20 40 40 0

    
    

      
      
    

      
         

 

 
The node added act as an articulation, so, the structure is behaved as mechanism. 


