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Assignment 3.1

On “The Plane Stress Problem”:

In isotropic elastic materials (as well as in plasticity and viscoelasticity) it is convenient to
use the so-called Lamé constants λ and µ instead of E and ν in the constitutive equations.
Both λ and µ have the physical dimension of stress and are related to E and ν by

λ =
Eν

(1 + ν)(1− 2ν)
µ = G =

E

2(1 + ν)

1. Find the inverse relations for E, ν in terms of λ, µ.
Solution

µ =
E

2(1 + ν)
=⇒ E = 2µ(1 + ν)

λ =
Eν

(1 + ν)(1− 2ν)

λ =
2µ(1 + ν)ν

(1 + ν)(1− 2ν)
=⇒ λ− 2λν = 2µν =⇒ 2ν(λ+ µ) = λ =⇒ ν =

λ

2(λ+ µ)

E = 2µ(1 + ν) =⇒ E = 2µ(1 +
λ

2(λ+ µ)
) =⇒ E =

µ(3λ+ 2µ)

µ+ λ

2. Express the elastic matrix for plane stress and plane strain cases in terms of λ, µ.
Solution
Elastic matrix for plane stress:

E

(1− ν2)

1 ν 0
ν 1 0
0 0 (1− ν)/2


Which in terms of µ and λ can be written as:

4µ(2µ+ 3λ)(µ+ λ)

4(µ+ λ)2 − λ2

 1 λ/2(µ+ λ) 0
λ/2(µ+ λ) 1 0

0 0 1/2− λ/2(µ+ λ)


Elastic matrix for plane strain:

E(1− ν)

(1 + ν)(1− 2ν)

 1 ν/(1− ν) 0
ν/(1− ν) 1 0

0 0 (1− 2ν)/2(1− ν)


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Substituting the equations obtained from the previous problem for E and ν yields:

E(1− ν)

(1 + ν)(1− 2ν)
=

µ(3λ+ 2µ)

λ+ µ
(1− λ

2(λ+ µ)
)

(1 +
λ

2(λ+ µ)
)(1− 2λ

2(λ+ µ)
)

= 2µ+ λ

ν

1− ν
=

λ

2(λ+ µ)

1− λ

2(λ+ µ)

=
λ

2µ+ λ

1− 2ν

2(1− ν)
=

1− λ

λ+ µ

2(1− λ

2(λ+ µ)
)

=
µ

2µ+ λ

Therefore, the Elastic matrix for plane strain can be written in terms of λ and µ as:2µ+ λ λ 0
λ 2µ+ λ 0
0 0 µ


3. Split the stress-strain matrix E for plane strain as

E = Eλ + Eµ

in which Eµ and Eλ contain only µ and λ, respectively.

This is the Lamé λ,µ splitting of the plane strain constitutive equations, which leads to

the so-called B-bar formulation of near-incompressible finite elements.

Solution

Eλ =

λ λ 0
λ λ 0
0 0 0

Eµ =

2µ 0 0
0 2µ 0
0 0 µ



4. Express Eλ and Eµ also in terms of E and ν.
Solution

Eλ =
Eν

(1 + ν)(1− 2ν)

1 1 0
1 1 0
0 0 0

Eµ =
E

2(1 + ν)

2 0 0
0 2 0
0 0 1



Assignment 3.2
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On “The 3-node Plane Stress Triangle”:

Consider a plane triangular domain of thickness h, with horizontal and vertical edges of
length a. Let us consider for simplicity a = 1, h = 1. The material parameters are E, ν.

Initially ν is set to zero. Two discrete structural models are considered as depicted in
the figure:

(a) A plane linear Turner triangle with the same dimensions.

(b) A set of three bar elements placed over the edges of the triangular domain. The

cross sections for the bars are A1 = A2 and A3.

1. Calculate the stiffness matrices Ktri and Kbar for both discrete models.

2. Is there any set of values for the cross sections A1=A2 and A3 to make both stiffness
matrix equivalent: Ktri=Kbar? If not, which are the values that make them more similar?

3. Why these two stiffness matrices are not equal?. Find a physical explanation.

4. Consider now ν 6= 0 and extract some conclusions.

Solution
For plane stress we have:

K(e) =

∫
Ω(e)

hBTEB dΩ(e)

where B is:

The shape functions of the triangular element can be written in terms of the natural
coordinates as the following:

N1 = 1− ξ − η

N2 = ξ

N3 = η
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We have:
∂ξ

∂x
= 1

∂η

∂x
= 0

∂ξ

∂y
= 0

∂η

∂y
= 1

Therefore:
∂N1

∂x
=
∂N1

∂ξ

∂ξ

∂x
+
∂N1

∂η

∂η

∂x
= −1

∂N1

∂y
=
∂N1

∂ξ

∂ξ

∂y
+
∂N1

∂η

∂η

∂y
= −1

∂N2

∂x
=
∂N1

∂ξ

∂ξ

∂x
= 1

∂N2

∂y
=
∂N1

∂ξ

∂ξ

∂y
= 0

∂N3

∂x
=
∂N1

∂η

∂η

∂x
= 0

∂N3

∂y
=
∂N1

∂η

∂η

∂y
= 1

Which yields:

B =

−1 0 1 0 0 0
0 −1 0 0 0 1
−1 −1 0 1 1 0


Elastic matrix for plane stress is:

E

(1− ν2)

1 ν 0
ν 1 0
0 0 (1− ν)/2


So the element stiffness matrix is computed as the following:

Ktri =
1

2
BTEB =

1

2

E

(1− ν2)


−1 0 −1
0 −1 −1
1 0 0
0 0 1
0 0 1
0 1 0


1 ν 0
ν 1 0
0 0 (1− ν)/2

−1 0 1 0 0 0
0 −1 0 0 0 1
−1 −1 0 1 1 0



Ktri =
E

(1− ν2)


3/4− ν/4 ν/4 + 1/4 −1/2 ν/4− 1/4 ν/4− 1/4 −ν/2
ν/4 + 1/4 3/4− ν/4 −ν/2 ν/4− 1/4 ν/4− 1/4 −1/2
−1/2 −ν/2 1/2 0 0 ν/2

ν/4− 1/4 ν/4− 1/4 0 1/4− ν/4 1/4− ν/4 0
ν/4− 1/4 ν/4− 1/4 0 1/4− ν/4 1/4− ν/4 0
−ν/2 −1/2 ν/2 0 0 1/2


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Considering ν = 0, we have:

Ktri = E


3/4 1/4 −1/2 −1/4 −1/4 0
1/4 3/4 0 −1/4 −1/4 −1/2
−1/2 0 1/2 0 0 0
−1/4 −1/4 0 1/4 1/4 0
−1/4 −1/4 0 1/4 1/4 0

0 −1/2 0 0 0 1/2


For Kbar which consists of three bar elements with A1 = A2 = A and A3, we have:

K(1) = E


0 0 0 0 0 0
0 A 0 0 0 −A
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 −A 0 0 0 A



K(2) = E


A 0 −A 0 0 0
0 0 0 0 0 0
−A 0 A 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0



K(3) =
E

2
√

2


0 0 0 0 0 0
0 0 0 0 0 0
0 0 A3 −A3 −A3 A3

0 0 −A3 A3 A3 −A3

0 0 −A3 A3 A3 −A3

0 0 A3 −A3 −A3 A3



Kbar = E



A 0 −A 0 0 0
0 A 0 0 0 −A
−A 0 A+ A3/2

√
2 −A3/2

√
2 −A3/2

√
2 A3/2

√
2

0 −A −A3/2
√

2 A3/2
√

2 A3/2
√

2 −A3/2
√

2

−A 0 −A3/2
√

2 A3/2
√

2 A3/2
√

2 −A3/2
√

2

0 −A A3/2
√

2 −A3/2
√

2 −A3/2
√

2 A+ A3/2
√

2


We have two different elements. The bar element is one dimensional while the triangular
element is two dimensional. The triangular element is able to tolerate shear stress. From
my view point, the main difference is because of the area of the elements. In the triangular
element we have the area of the element to be equal to the area of a triangle. In bar
element the area is not the same as a triangle and it is the area of each bar. The bar
element has more zeros than triangular which means that some of the degrees of freedom
do not have influence on the result.
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